TABLE OF CONTENTS

1.0 GENERAL INFORMATION . e e e e e e 1-1
1.1 Command Line Syntax and Llne Edltlng e e e e . 1-1
1.1.1 Command Line Arguments e e e e e e e e e e e e e e 1-1
1.1.2 Input/Output Redirection « . « « .« . - 1-2
1.1.3 Multiple Commands . . . « « « « « « « o o o o o e . 1-3
1.1.4 command Line Editing « « ¢« « ¢ o o o o o o . 1-3
1.1.5 Program or command abort o 1-4
1.1.6 Command or Batch Files« .« « +« « « « « « & 1-5
1.2 VMEPROM built-in commands e e e e e e e s e e e e 1-6
1.2.1 # — Symbolic Command Name s e e e e e e e e e e e e . 1-7
1.2.2 AF - APPEND FILE . . . « « o « v o o o o o o« o o o o 1-8
1.2.3 AS - LINE ASSEMBLER . C e e e e e e e e 1-9
1.2.4 ASSIGN - Assign New Input or Output Ports P £ S §
1.2.5 BASE - SET/DISPLAY BASE REGISTER 1-12
1.2.6 BENCH - Built in benchmarks SO 0
1.2.7 BF — Block fill . . . o « « o o o ¢ o o e e e e e e e 1-14
1.2.8 BM - Block move T £ 521
1.2.9 BP - BAUD PORT . . e e e e e e e e e 1-16
1.2.10 BR - Set/Dlsplay/Delete Breakp01nts W e e e e« o+ « .« 1-18
1.2.11 BS - Block search R e
1.2.12 BT - Block Test e 1-20
1.2.13 BV - Block Verify O S
1.2.14 CF - COPY FILE . . e e e e e e e e e e e e e 1-22
1.2.15 COLD - Cold start VMEPROM . e e e e e e e e 1-23
1.2.16 CONFIG - READ HARDWARE CONFIGURATION e e s s e e e e s 1-24
1.2.17 CREATE TASK e e e e e e e . e e e e e e e e e 1-25
1.2.18 DD — Disk DUMP .+ + « « o « o o o o s+ o s+ o o o o 4 e 1-27
1.2.19 DF — DEFINE FILE . . .« . « « « « « o o o« o o o o o o = 1-28
1.2.20 DI - Disassembler O
1.2.21 DL - DELETE FILE . . . e e e e e e e e 1-30
1.2.22 DN - Display/Change the name of a dlSk e e e e e e . 131
1.2.23 DR - Display Processor Registers . . e e e e .. 1-32
1.2.24 DRF - DISPLAY REGISTERS OF THE 68881/68882. e e e e e . 1-33
1.2.25 DT - DATE AND TIME e e e e e . e e e e e e 1-34
1.2.26 DU - Dump S-record . P £ 1
1.2.27 ED - VMEPROM screen edltor e & 13
1.2.28 ER — LIST ERRORS+ « v v o o o o o« « o =« o o o = 1-38
1.2.29 EV - SET/RESET EVENT « « « « « o o o o =+ o = 1-39
1.2.30 FD — File DUMP . . =+ « & « « o « o « + & o o o o s . . 1-41
1.2.31 FM — FREE MEMORY « « « « « + « o o« o o o = 1-42
1.2.32 FRMT - Format floppy or Winchester disk e e e e . . . 1-43
1.2.33 FS - FILE SLOT USAGE . . . « . +« « « « « « « « « « . . 1-53
1.2.34 GO - Start user program e e e e e e e e 1-b4
1.2.35 GD - Start user program without breakpoints 1-55
INTRODUCTION 172736 GM - GET MEMORY = v o o v v i e i e i e e i e e e e . 1-56
1.2.37 GOTO — GOTO string « « « « « « « o o« o o o o = 1-57
1.2.38 GT - Start user program with temporary breakpoint . . 1-58
1.2.39 HELP - HELP e T 1-59
1.2.40 IA - IF ALTERED . Y 1-60
1.2.41 ID — SET SYSTEM DATE/TIME . « 4 s+ o 1-61
1.2.42 INIT - Initialize a disk for use w1th VMEPROM e e 1-62
1.2.43 INSTALL - INSTALL UARTS OR DISK DRIVER 1-63
1.2.44 KM - KILL MESSAGE e e e e e e e e e e e e e 1-67
1.2.45 KT KILL TASK . & v « v o « o o o o o o o o o o« o o« 1-68
1.2.46 LC - LIST DIRECTORY e e e e e e e e e e e e e e e e 1-69
1.2.47 LD — LOAD FILE . . .« « + ¢ « « o o o o o « o o« o o o 1-70
1.2.48 LO — Load S-record . . .« « « « + « v e e e e e e e e 1-71
1.2.49 LS — LIST DIRECTORY e e e e e e e e e e e e e e e e 1-72

R U S R e e e el e el

l\J(\JPJ(\)[\JNNNNNNNNNNNNNNNNNNNNNN

LT -
LV -

TABLE OF CONTENTS (cont’d)

LIST TASKS e e e
DIRECTORY LEVEL . .

M - Modify Memory

MD -
MF -

MS - Set memory to constant or strlng .

Display Memory .
MAKE FILE . . .

PROMPT - CHANGE PROMPT SIGN

RC -
RD -

RESET CONSOLE
RAM DISK

Modify Processor Reglsters e e e e e e

RENAME FILE

- EPROM programmlng
RESET DISK .

SET FILE ATTRIBUTES
SHOW FILE
SEND MESSAGE o e e e
DISK SPACE .

SET TASK TERMINAL TYPE
Save memory to file
SYSTEM DISK

T - Trace program executlon

Set trace count

- Enable/Disable dlsplay

Trace on change of flow
TRANSPARENT MODE .
TASK PRIORITY

CONSOLE UNIT .

ZERO MEMORY . .

1-74
1-75
1-76
1-77
1-78
1-79
1-80
1-81
1-82
1-83
1-85
1-86
1-91
1-92
1-94
1-95
1-96
1-97
1-99
1-100
1-101
1-103
1-104
1-105
1-106
1-107
1-108
1-109

The following clarifies some general conventions in more detail
than what is done in the VMEPROM User’s Manual Chapter 3 titled
BUILT-IN COMMANDS.

1. Line Assembler/Disassembler

The line assembler of VMEPROM assumes that all immediate
values, addresses and oftsets are entered in decimal. So hex
values have to be proceeded with a dollar ($) sign. In
addition, binary values may be used 1if proceeded by a percent
sign ("%") and octal values if proceeded by an at/around sign
(n@m). The disassemblers display all values in hex
representation.

The line assembler accepts a pseudo opcode of the form DC.B,
DC.W and DC.L to defined constant data storage. The
disassembler displays all illegal opcodes as DC.W.

Both the line assembler and disassembler support the opcodes as
described in Chapter 4 of the VMEPROM Manual.

2. Most of the VMEPROM commands assume that the parameters are
given in hex (without a leading $ sign).

However, some values are assumed in decimal and may only be
entered in decimal. These are:

port VMEPROM port numbers are in the range 0-15
and have to be entered in decimal. The only
exception is the BP command which allows the
port number to be entered in hex (with a
leading $ sign) and decimal.

disk The disk numbers have to be entered in
decimal

level The directory 1levels have to be entered in
decimal

tasks The task numbers have to be entered in
decimal

task priorities The task priority has to be entered in

decimal

error numbers The error numbers are displayed in
decimal and have to Dbe entered in
decimal

event The event number has to be entered in

1

decimal

memory size The memory size (as for the FM, GM and
CT commands) has to be entered in
decimal

In addition, the benchmark number has to be specified in
decimal, while the address parameter of the Bench command is to
be given 1in hex. The INIT Command assumes all values to be
decimal and the sector count of the DF command has to be given
in decimal.

VMEPROM BUILT-IN COMMANDS

1.0 GENERAL INFORMATION

The VMEPROM command interpreter is a set of resident routines
for program debugging and handling of the most common kernel
functions.

The command interpreter searches for a given command in the
following sequence:

1. Is the command defined in the name table ?

2. Is it a built-in command ?

3. Is the command available as a disk file on
the current system disk ?

If a match is found in any of the above steps, the command is
executed.

The prompt of VMEPROM is a single gquestion mark, followed by
a space ("2 ").

1.1 Command Line Syntax and Line Editing

1.1.1 Command Line Arquments

The VMEPROM command interpreter allows several options. In
general the complete command 1line is divided into separate
arguments. The arguments must be separated by one or more
spaces or a comma. If a null-argument has to be entered, it
must be represented by a comma only.

Example: ? PROG ARGIl,,ARG3,

In this example, the arguments number 2 and 4 are
null-arguments.

If any argument is using a comma, space, period or one of the
I/0 redirection arrows, it has to be put in brackets to
suspend the command line interpretation.

Example: ? PROGl (Hello, world.),(<....>),>TEMP

The file TEMP now contains the output of PROGl1 which may
be:

? SF TEMP

ARGUMENT 1 was: Hello, world.
ARGUMENT 2 was: <....>
ARGUMENT 3 was:

ARGUMENT 4 was:

ARGUMENT 5 was:

?

1.1.2 Input/Output Redirection

VMEPROM supports simple I/O redirection. The specifiers are
the signs ’<? for input and ’>' for output and may appear at
any location in the command 1line, but must be after the
command name. Immediately after the redirection signs, a port
number or a filename must be specified.

The Port number may be one of the ports available in the
system. It must be specified in a hex, ranging from 1-9 and
A-F.

The filenames for I/0 redirection may be any file residing on
the current disk.

The arguments specifying the I/0 redirection are removed from
the command line by the command interpreter and do not appear
in the user program or the built-in command.

Example: ? PROG <TEMP >3 ARG1,ARG2,ARG3,ARG4

In this example, the program PROG is started. It is getting
all inputs from the TEMP and all output is redirected to
port 3.

The I/0 redirection uses the following PDOS functions:

- Input from file uses the assigned console input file
mechanism of PDOS.

- Input from port reassigns the input port number (PRTS)
in the TCB temporarily.

- Output to file uses the spool file mechanism of PDOS
together with the Unit 4 port. So the Unit 4 port
shall not be used.

- Output to port reassigns the output port number (U1PS)
in the TCB temporarily.

1.1.3 Multiple Commands

VMEPROM allows command lines of up to 78 characters. This
command 1line can contain several different commands. The
parsing of the command line is terminated at the first period
(".") and the remaining command line is saved to be used
later.

Example: ? RM DO 12345678.SM 2,Hello
? SM 2,Hello
?

Be careful when modifying a floating point register from the
command line as the decimal point is interpreted as a command
line separator. If a floating point register has to be
modified, the number must be put in brackets.

Example: ? RM FPO (12.345).SM 2,Hello

? SM 2,Hello
2

i.1.4 Command Line Editing

The PDOS get line (XGLM) primitive is used to get a command
line of up to 78 characters into the command line buffer.

Input is normally in replace mode which means an incoming
character replaces the character at the cursor. Various
control characters can be used to edit the input line.

The following table summarizes the control characters:

[ESC] = Cancel current line
[CTRL-C] = Cancel current line
[CTRL-I] = Enter insert mode
[CTRL-A] = Recall last entered line
[CTRL-L] = Move right 1 character

[CTRL-H] = Move left 1 character
[CTRL-D] = Delete character under cursor
{RUBOUT] = Delete 1 character to the left

A [CTRL-I] changes input from replace to insert mode. The
mode returns to replace mode when any other editing control
code is entered. Replace mode overwrites the character under
the cursor. Insert mode inserts a character at the current
cursor position.

In either mode, the cursor need not be at the end of the 1line
when the [CR] is entered. The command line is passed as it
appears on the screen.

When a line is accepted, it 1is copied to another buffer
(MPBS$) where it <can be recalled by using the [CTRL-A]
character. A [CR] and [LF] are output to the console
followed by the recalled 1line. The cursor is positioned at
the end of the line. This is a circular buffer and commands
will rotate through it as they are recalled.

1-3

Numeric parameters are entered as signed decimal, hex, or

binary numbers. All numbers are converted to two’s
complement 32-bit integers and range from —2,147,483,@48 Fo
2,147,483,647 (hex $80000000 to $7FFFFFFF). All built-in

commands assume that numbers are entered in hex if not noted
otherwise.

Decimal numbers must be preceded by an ampersand (&), binary
values by a percent sign (%).

(Note: Numbers are not checked for overflow. Hence,
4294967295 is equivalent to -1.)

A line beginning with an **' is ignored. This is very useful
to insert comment lines in command files.

1.1.5 Program or Command Abort

There are two basic methods of aborting a running program or
command.

The first one is the ABORT switch on the CPU-board. This
switch causes a level 7 interrupt to the processor. If a
VMEPROM command was under execution at this time, the message
"Abort switch pressed" is displayed and control is
transferred back to the command interpreter immediately.

If a user program is running when the ABORT switch is
pressed, the current contents of the processor registers are
saved and a message along with the processor registers is
displayed.

The second method is typing *C twice on the keyboard. If that
happens, VMEPROM will abort the current command Or prodram
within 1.28 seconds and control is transferred to the command
interpreter. The processor register is not saved by this
action. They show the same status as they had before the
program was started.

1.1.6 Command or Batch Files

If command or batch files are
line can be used. The
7&07

the command

character substitutions.

system error
parameter of the command line,
’&97. Y&

forth up to
number .

Example:

number.

? SF DOIT
RM &1 &3
RM &2 &4

? DOIT DO,A1,12345678,1000

executed, the parameters from
character is used for

replaced with the last
replaced with the first
second, and so
is replaced with the current task

r151°?

? RM DO 12345678

? RM Al 1000

1827

1.2 VMEPROM Built-in Commands

The VMEPROM built-in commands are described in detail in this
chapter.

The following general notation is wused throughout this
document:

- symbolic representation is put in arrows (i.e.
<address> where an absolute address has to Dbe
inserted, or <filename> where a filename has to be
inserted.

- Optional arguments are in square brackets (i.e.
[<option>]). Those arguments must not be specified and
have a default value.

- If one argument out of more can be selected, the
arguments are separated by a "|" (i.e. [B | W | L] to
select Byte, Word or Long Word size).

- If more than one out of many possibilities for an
argument has to be selected, these are marked with a
ng" sign (i.e. [B|W|L&N&O|E] to select B or Wor L
together with N and O or E).

Some more hardware related commands may be available. These
commands are described in detail in the User’s Manual of your
particular CPU board.

Most of the VMEPROM commands assume that the parameters are
given in hex (without a leading $ sign).

However, some values are assumed in decimal and may only be
entered in decimal. These are:

Port VMEPROM port numbers are in the range
0-15 and have to be entered in decimal.
The only exception in the BP command
which allows the port number to be
entered in hex (with a leading $ sign)
and decimal.

Disk The disk numbers have to be entered in
decimal
Level The directory levels have to be entered
in decimal
Tasks The task numbers have to be entered in
decimal
Task Priorities The task priority has to be entered in
decimal
Error Numbers The error numbers are displayed in
decimal and have to be entered in
decimal
1-6

1.2.1 # - Symbolic Command Name

Format: #
<name>
<name>,<command string>

The symbolic name command is used to display, delete or
define a symbolic name for often used command lines. The
first format displays all currently defined names, the second
deletes a defined name from the list and the third one
defines a new name with the command string. VMEPROM supports
up to 5 symbolic names with command 1lines of up to 40
characters.

Example: ? # ASM AS 8000 Define ASM for the command AS
?
ASM: AS 8000
? # D DR Define D for register display
2
ASh: AS 8000
D: DR
? ASM Invoke ASM command name
8000 NOP

1.2.2 AF - APPEND FILE

Format: AF <filel>,<file2>
The APPEND FILE command concatenates two files. The first
file <filel> is appended onto the end of file <file2>. The

file type attribute of <filel> is transferred to <file2>.
The contents of <filel> is not affected by the operation.

A [CTRL-C] interrupts this function on a sector boundary,
closes both files, and returns to the monitor. This action
is reported by the message ’'*C’.

The APPEND FILE command uses the assembly primitive XAPF.

Example:

? AF templ,temp2 Append file templ to the end of temp2

1.2.3 AS - LINE ASSEMBLER
Format: AS <address>

The AS command invokes the line assembler/disassembler of

VMEPROM. It can assemble and disassemble all 68000/010
instructions and all the PDOS system calls listed in section
4 of this manual. In addition the 68020/68030 version of

VMEPROM can assemble and disassemble all 68020/68030 and
68881/68882 opcodes.

The AS command, when invoked, displays the current address
offset and the address within the window. Then the current
location is disassembled.

After the prompt on the next 1line, the user can enter one of
the following:

1) A valid 680x0 mnemonic.

2) A '#' sign followed by the new address within the
window. This is an absolute address change.

3) A ’=’ to disassemble the same location again.

4) A '+! or '-' sign followed by the number of bytes the

address has to be increased or decreased. This is a
relative address change.
5) A ’.' to exit the line assembler and return control to

the command interpreter.

The 1line assembler of VMEPROM assumes that all immediate
values, addresses and offsets are entered in decimal. So hex
values have to be proceeded with a dollar ($) sign. In
addition, binary values may be used if proceeded by a percent
sign ("%") and octal values if proceeded by an at/around sign
("@m). The disassemblers display all values in hex
representation.

The line assembler accepts a pseudo opcode of the form DC.B,
DC.W and DC.L to defined constant data storage. The
disassembler displays all illegal opcodes as DC.W.

Both the line assembler and disassembler support the opcodes
as described in Chapter 4 of the VMEPROM Manual.

Example:
AS 8800
8800
8806
8800
8806

8900

NOP

MOVE.L #$123,D1
NOP

-6

MOVE.L #$123,D1
<Cr>

NOP

#8900

NOP

Invoke the line assembler

New opcode entered

Back six bytes

Disassemble next instruction
Go to absolute address 8900

Back to the command
interpreter

1.2.4 ASSIGN - Assign New Input or Output Ports

Format: ASSIGN <port>
ASSIGN <port>,<output port>

The ASSIGN command has two functions, depending on the
command line arguments. If the output port is omitted, ASSIGN
sets a new input and output port for the current task. If the
output port 1is specified, the default input/output ports are
unchanged, but the alternate output ports of the task are
changed. The output port specified must be in the range 1-4.

Example:
? ASSIGN 3 VMEPROM now uses port 3 for I/0
? ASSIGN 3,2 Use port 3 as unit 2 port

1.2.5 BASE - SET/DISPLAY BASE REGISTER

Format: BASE
BASE <address>

The BASE register in VMEPROM is used to offset all memory
accesses into the tasks memory. So all debugging can be done
relative to address 0, which is actually the begin address of
your tasks memory. This saves a lot of typing and makes sure
that no other tasks memory is destroyed by a typing error.

Example:

? base<cr> Display BASE register

Base = 00000000 : <cr> No changes

? base 8000<cr> Set BASE register to $8000

? base<cr> Display BASE register

Base = 00008000 : <cr>

?M 0<cr> Open address $0 +BASE register

8000+0000 AOOE : <cr>
8000+0002 0000 <cr>
8000+0004 0000

?

1.2.6 BENCH - Built-in Benchmarks

Format: BENCH
BENCH <#>,<address>

These function can execute one of the built-in benchmarks. If
only BENCH is entered, a short descriptions of all benchmarks
is displayed on the terminal. A benchmark 1is executed by
entering the number of the benchmark (in decimal) and the
address where it shall run in memory (in hex).

The following benchmarks are available:

Bench 1: Decrement long word in memory, 10.000.000 times

Bench 2: Pseudo DMA 1K bytes, 50.000 times

Bench 3: Substring character search, 100.000 times, taken from EDN,
08/08/85

Bench 4: Bit Test/Set/Reset, 100.000 times, taken from EDN,08/08/85

Bench 5: Bit Matrix Transposition, 100.000 times, taken from EDN,
08,/08/85

Bench 6: Cache test, executes 128K bytes program 1000 times
CAUTION: This benchmark will destroy 128K bytes memory

Bench 7: Floating Point - 1.000.000 Additions

Bench 8: Floating Point - 1.000.000 Sines

Bench 9: Floating Point - 1.000.000 Multiplications

Bench 10: 100.000 Context switches

Bench 11: 100.000 Set system event

Bench 12: 100.000 Change task priority

Bench 13: 100.000 Send and Receive task message

Bench 14: 100.000 Read system time

Example:

? bench 1 8000 Execute benchmark #1 at address $8000

Bench 1: Decrement long word in memory, 10.000.000 times
Benchmark time = 0:07.23

?

1.2.7 BF - Block Fill

Format: BF <begin>,<end>,<value>,[B | W | L]
BF <begin>,<end>,<pattern>,P

This command fills the specified memory area with a constant.
The type of the constant is defined by the option and may be
a Byte, Word, Long word, or Pattern. A pattern is a ASCII
string which 1is to be put in inverted commas. The maximum
length is only restricted by the 1length of the input line,
which may not exceed 78 characters. If the pattern contains
argument separators, such as space, comma, or full stop, the
pattern has to be put in brackets. If no option is specified,
a default of Word is assumed.

Example:
? BF 8000 8100 4E71 Fill $8000 to $8100 with $4E71
? MD 8000 20 Display memory to $8000

8000 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 NgNgNgNgNgNgNgNg
8010 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 NgNgNgNgNgNQNgNq

? BF 8000 8100 ("Hello World") P Fill memory with a pattern

?

1-14

1.2.8 BM - Block Move
Format: BM <begin>,<end>,<destination>

The BM command copies a memory from one area to another. The
areas may be overlapped.

Example:

2 BM 8000 8080 9000 Copy memory from $8000 to $8080 to $9000
? MD 9000 20 Display memory at $9000

9000 4E 71 4E 71 4E 71 4E 71 4E 71 4AE 71 4E 71 4E 71 NgNgNgNgNgNgNgNq
9010 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 4E 71 NgNgNgNgNgNgNgNg

?

1.2.9 BP - BAUD PORT

Format: BP
BP <port #>
BP {-}<port #>,<baud rate>

BP {-}<port #>,<baud rate>,<type>,<UART base addr>
The BAUD PORT command 1initializes a VMEPROM I/O port and
binds a physical UART to a character buffer. The command
sets the UART character format, receiver and transmitter

baud rates, and enables receiver interrupts.

The first parameter <port #> selects the console port and
ranges from 1 to 15. This corresponds to the character input
buffers defined in the VMEPROM system RAM (SYRAM). If a
minus (-) precedes the port number, then the associated port
is stored in the UNIT 2 (U2P$(A6)) variable.

The receiver and transmitter baud rates are initialized to
the same value according to the <baud rate> parameter. The
<baud rate> parameter ranges from 0 to 8 or the corresponding
baud rates of 19200, 9600, 4800, 2400, 1200, 600, 300, 110,
or 38400. Either parameter type is acceptable.

Baud Rates Allowed:

0 = 19200 baud
1 = 9600 Dbaud
2 = 4800 baud
3 = 2400 Dbaud
4 = 1200 baud
5 = 600 baud
6 = 300 baud
7 = 110 baud
8 = 38400 baud

The <type> and <UART base addr> are optional and are included
when binding a logical port to a different UART. For <type>
information, refer to the User’s Manual of your CPU-board.

The <port #> can also be used to set or reset the port flags.

These are bit positions 8 through 15 of the resulting integer
value and are defined to the right. It is recommended that
the hex format be used when setting these parameters.

$100 + port
$200 + port
$400 + port

CtrlS CtrlQ protocol

Pass control characters

DTR protocol

$800 + port 8-bit character I/0

$1000 + port receiver interrupts disable
$2000 + port = even parity enable

$4000 + port = clear flag bits

o

o

If the BP command has no arguments, then a listing of all
currently installed ports is 1listed to the console. The
'Task’ parameter indicates the currently assigned task to
that port.

Example:

? BP

Port Type fwpi8dcs
1 1 00001100

? BP 2,1,1,8FF800200
?

Base Baud task

FF800000 9600

Initialize the UART

1

1.2.10 BR - Set/Display/Delete Breakpoints

Format: BR
BR *
BR <number>
BR <number> ,<address>
BR <number>,<address>,<command>
BR <number>,<address>,<command>,<count>

VMEPROM supports a maximum of 10 breakpoints in the range
0-9. The BR command is used to set, display or delete
breakpoints.

The first format displays all currently defined breakpoints.
The second one deletes all defined breakpoints. The third
format is used to define or delete one single breakpoint. If
the address field is omitted, the breakpoint with the
specified number is deleted, if an address is specified, a
breakpoint is either defined at this address, or an existing
breakpoint is overwritten.

If a count is specified, the program first stops at the
breakpoint when this specification has been achieved. The
default value is one.

The default action taken by a breakpoint is a display of the
breakpoint number encountered and a display of all processor
registers.

So there is a forth option of the command line to change the
default behaviour at a breakpoint. The command, which can be
specified 1is executed instead of the display described
before. The command may not have any arguments and may have a
length of up to 9 characters.

The command may be a symbolic name, one of the built-in
commands of VMEPROM or a disk file (command file or program).

Example:

? br 0 8020 Define breakpoint 0 at address $8020
? br Display breakpoints

Defined Breakpoints:

BO 8020

1.2.11 BS - Block Search

Format: BS <begin>,<end>,[/]<value>[,<option>]
BS <begin>,<end>,[/]<pattern>,P

This command searches the specified memory area for a
constant. The type of the constant is defined by the option
and may be a Byte, Word, Long word, or Pattern. A pattern is
a ASCII string which is to be put in inverted commas. The
maximum length is only restricted by the length of the input
line, which may not exceed 78 characters. If the pattern
contains argument separators, such as space, comma, oI full
stop, the pattern has to be put in brackets. If not option is
specified, a default of Word is assumed.

The value or pattern which has to be searched in memory may
be preceded by a "/" to look only for locations not
containing the value or pattern.

Example:
? bs 8000 8100 /4e7l Search memory for "not"
Search: 8020 = 4E70 value
Found

? bs 8000 8100 4e70

Search: 8020 = 4E70
Found

? bs 8000 8100 ("Hello World") P Search memory
? pattern. None found.

1-19

Search memory for value.

for

1.2.12 BT - Block Test
Format: BT <begin>,<end>

Tpe Elock Test‘ §ommand performs an in-depth memory test
within the specified address limits. The following passes are
performed:

1) Byte Pattern Test
2) Word Pattern Test
3) Long Pattern Test
4) Word sShift Test
5) Address Test

If any errors are found they are reported with the type of
teSF.Wthh failed, the address and the differing values. In
addition the error counter in the task control block (TCB) is
incremented.

Example:

z bt 200000 300000 Test memory from $2000000 to $300000

1-20

1.2.13 BV - Block Verify

Format: BV <begin>,<end>,<destination>

This command compares two blocks of memory. If the specified
blocks are not equal, the different values and the memory
location is displayed. 1In addition the error counter in the
task control block (TCB) is incremented.

Example:

? bv 8000 8080 8080
Verify: 8021 = 70 80Al =71

?

1.2.14 CF - COPY FILE
Format: CF <filel>,<file2>

The COPY FILE command copies <filel> into <file2>. The
original <file2> 1is destroyed and replaced by <filel>. The
file type attribute of <filel> 1is transferred to <file2>.
<filel> is not affected by the operation.

A [CTRL-C] interrupts this function on a sector boundary,
closes both files, and returns to VMEPROM. This action is
reported by the message "*C’.

Example:

? 1lc
test 1v 1s 1c
Number of files: 4 Sectors allocated: 5

? cf test,testl
? 1lc
test iv 1s 1c
testl
Number of files: 5 Sectors allocated: 6

?

1-22

1.2.15 COLD - Cold Start VMEPROM

Format: COLD

The COLD command is used to reinitialize all VMEPROM
variables. It takes the same action as a reset, except that
the kernel and all associated tasks are not affected.

Example: ? COLD
?

1-23

1.2.16 CONFIG - READ HARDWARE CONFIGURATION

Format: CONFIG

The CONFIG command searches for the available hardware
configuration on the VMEbus. This function is implementation
dependant.

For details please refer to the User’s Manual of you
CPU-board.

If you are using Winchester disks, please make sure that the
disk drive 1is up to speed when the CONFIG command is

executed.

The CONFIG command also installs the loadable driver for all
boards which are available.

Example:
? CONFIG

Disk driver FORCE-ISCSI1 installed
UART FORCE-ISIO1l installed

ISCSI-1 : 1 boards available
ISIO-1 : 1 boards available
?

1-24

1.2.17 CREATE TASK . . .
mEEESERAAEE The values for size, priority and port have to be entered in
Format: CT <command>,<size>,<priority>,<port> decimal.
CT ,<size>,<priority>,<port> .
CT <address>,<size>,<priority>,<port> Example:

5
The CREATE TASK command places a new task entry in the task £a§§ ri vi/ev2 si tcb € nam
queue and 1list of the real-time kernel of VMEPROM. %0/0 24 evilsev 3;29 00087000 oogggooo Eoi 3/0/0 1t €
Parameters for the new task include a command 1line, memory /1/
size, task priority, and an I/0 port. The new task number is 2 T 100,642
; ? ’ ,64,
reported after the task is created. Son task 1 er = 1
The <command> parameter is the command line for the new task. > LT
task pri evl/ev2 size tcb eom ports name
*
The string is passed to the new task via a message buffer and ??8 zi 98 igg gggg;ggg gggggggg ;;;;g;g;g 1t

hence cannot exceed 64 characters in length.
? CT TEST,20,63,0

Multiple commands and parameters may be passed by using Son task number = 1
parentheses.

. . . . ? C 2 ,
If the first parameter 1is omitted, then the VMEPROM monitor SonTtgéioé O{gi 2 1
is
invoked. 5

If an address is specified instead of <command>, this address
is interpreted as the start address of a program in memory.
The address must be specified in hexadecimal and must start
with a number 0-9 not to conflict with a program name.

The amount of memory for the new task is given by <size> and
is in 1 Kbyte increments (although rounded to the next 2

Kbyte boundary). The minimum amount of memory is 8 Kbyte.
The system memory bit map is searched for a contiguous block
of memory equal to <size>. If the search fails to find a

large enough block, then memory is taken from the parent task
and allocated to the new task.

The <priority> parameter specifies the new tasks priority.
The range of task priority is from 1 to 255 where 255 is the
highest priority. The highest priority, ready task always
executes. Tasks on the same priority level are scheduled in
a round robin fashion.

The <port> parameter assigns an I/0 port to the new task.
Port 0 is the default and is called the phantom port. On the
phantom port, all character outputs and conditional inputs
are ignored while requests for character input result in the

task aborting with error 86. More than one task may be
assigned to an output port. The input port is a unique
assignment and cannot be shared with another task. Input
ports are allocated on a first come basis. No VMEPROM

monitor task with the phantom port (port 0) can be created.

After a task is created, the spawned task number is reported.
This number is used in killing the new task.

1.2.18 DD - Disk Dump

Format: DD <disk>,<sector>
DD <disk>,<sector>,<count>

The disk dump command displays the raw contents of disk
sectors on the terminal. An optional count specifies the
number of contiguous sectors to be dumped.

The data is represented in hex and ASCII.

The DD command expects the disk number and the count to be
entered in decimal while the sector number is assumed to be
in hex.

Example:

?2dd 001

Disk # O Sector = 0 ($0)

0000
0010
0020
0030
0040
0050
0060
0070
0080
0090
00A0
00BO
00CO
00D0
00EO
00F0
More

?

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 N

(cr) ? <esc>

1.2.19 DF - DEFINE FILE

Format: DF <file{;level}{/disk}>
DF <file{;level}{/disk}>,<sectors>

The DEFINE FILE command creates a new file in a disk
directory. <File> specifies the file name, and 1if included,
{;level} the file directory 1level and ({/disk} the disk
directory number. Defaults for the latter two parameters are
the current level and disk number.

The <sectors> parameter specifies the number of contiguous

sectors to allocate to the file. One initial sector is
allocated if the <sectors> parameter is not specified. Only
contiguous files can be defined. A contiguous file

facilitates random access to the file data since VMEPROM can
directly position to any byte within the file without
following sector links.

1f a contiguous file is extended past the original allocation
length and a non-contiguous sector is appended to the file,
then the contiguous file attribute is deleted.

Therefore, even though contiguous files can be extended, you
should allocate enough sectors when the file is first defined
to handle all anticipated data. Otherwise, random file
access slows down.

The length of a contiguous file is specified in sectors.
Each sector contains 252 bytes or <characters of data. The
file size is given by the number of sectors times 252. The
maximum file size is limited by the size of the logical disk.

Example:

? DF d4fl
? LC

afl

Number of files: 1 Sectors allocated: 1

?

1.2.20 DI - Disassembler

Format: DI <address>
DI <address>,<count>

The DI command causes the disassembler to be invoked and
display the mnemonic, starting at the specified address. If
count is specified, it is interpreted as the number of lines
to display. If count is omitted, a full page is displayed on
the terminal and the wuser 1is then prompted to continue
disassembly (enter <cr>) or to return to the command
interpreter (enter any other key).

The disassembler supports all 68000/010 mnemonics. The
68020/68030 version of VMEPROM also supports the 68020/68030
and the 68881/68882 opcodes.

Example:

? DI 8000 5

8000 NOP
8002 NOP
8004 NOP
8006 NOP
8008 NOP

?

1-29

1.2.21 DL - DELETE FILE
Format: DL <file>

The DELETE FILE command removes from the disk directory the
file specified by <file>. All sectors associated with that
file are deallocated in the disk’s sector bit map and freed
for use by other files on the same disk. A file cannot be
deleted if it has previously been either delete- or
write-protected.

These protection flags must be removed with the *SA’ command
before the file can be deleted from the disk.

A sector bit map is maintained by VMEPROM on each disk so
that file creation and deletion does not require a disk
compaction routine to recover lost disk space.

However, frequent file definitions, deletions, and extensions
do create small groups of contiguous sectors which tend to
fracture files and make the creation of contiguous files
impossible. This 1is remedied by periodically transferring
all files to a newly initialized disk which allocates sectors
sequentially for each file.

Example:
? 1lc
arfi dafz temp arf3 d1i1
Number of files: 5 Sectors allocated: 14
? dl temp
? 1lc
df1l df2 df3 411
Number of files: 4 Sectors allocated: 5

?

1.2.22 DN - Display/Change the name of a disk

Format: DN
DN <disk#> 1.2.23 DR - Display Processor Registers

DN <disk#>,<name>

Format: DR

The DN command displays or changes the name of a logical

disk. 1If the disk number is omitted, the current system disk The DR command displays all processor registers on the

screen. The displayed registers are not the real current

is assumed. If no name 1is given the current name is L Y .
displayed, if a name is specified it {s assigned to the disk. Erogeisgr iﬁngterS, buththose which are kept én meggry iﬁd
The disk name is only for "human" readers and is not used b oaded to the processor when a program 1s started. en the
ans of the VﬁEPROM cgmmands Y execution of a program is terminated (by an XEXT instruction,
: a trap or a breakpoint or any other exception) the processor
registers are saved again and can be displayed by the DR
Example: coﬁmand‘ J pray Y
?,DN 6 See also: 1.2.24 DRF - Display floating point registers
Disk 6: VMEPROM DOC
? DN 0 Test disk Note: It is processor dependent as to which registers are to
?'DN 0 . be displayed.
Disk 0: Test disk Example:
2 ? DR
o} 1 2 3 4 5 6 7

D: 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
A: 00000000 00000000 00000000 00000000 00000000 00001000 00007000 000767FC
VBR = 00000000 CAAR = 00000000 CACR = 00000000

*USP = 000767FC SSP 00007BB2 MSP 00007890

PC = 00008000 SR 0000 SFC 0 DFC =0

[T

?

1.2.25 DT - DATE AND TIME

1.2.24 DRF - DISPLAY REGISTERS OF THE 68881/68882 Format: DT

The DT command outputs the current date and time to the user

Format: DRF
console. These values can be changed by the ID command.

This command displays the registers of the 68881/68882

coprocessor. Like the processor registers, these registers are Example:

saved and restored whenever a user program is invoked. This

command gives an error if no 68881/68882 coprocessor is installed. ? DT
16-Mar-88
16:47:38

See also: 1.2.23 DR - DISPLAY REGISTERS

Note: This command is only available for 32 bit processors. ?
Example:
? DRF

FPO: 0.00000000 E+000 0.00000000 E+000 0.00000000 E+000 0.00000000 E+000
FP4: 0.00000000 E+000 0.00000000 E+000 0.00000000 E+000 0.00000000 E+000

1.2.26 DU - Dump S-record

Format: DU <begin>,<end>
DU <begin>,<end>,<command line>

This command sends an S-Record to the standard output port.
It may be redirected with the usual redirection method.

An optional command line may be specified which is sent via
the output port before the S-record starts. This can be used
to start a load command on the host system.
The following S-record types are supported:

Sl Start record

S2 Data record, this type

needed if the end address is

smaller than $8000.

S3 Data record, this type is used
if the end address is bigger

than $800000.

S7 End-record for S3 records.
S8 End-record for S2 records.
S9 End-record for S1 records.

The address field of all End-records is 0.
Example:

? DU 8000 8020

S0030000FC
S11700004E714E714E714E714E714E714E714E714E714E7172
S10F00144E714E714E714E714E714E7162

S9030000FC

? DU 8000 8020 »>2
?

1.2.27 ED - VMEPROM Screen Editor

Format: ED <filename>
Example:
3.2.x ED - EDIT

Format: ED
ED <filename>

The ED command invokes the build in screen editor of the
VMEPROM.

An existing file can be specified at the command line and
will be loaded when the editor starts.

The size of the editing file depends on the size of the
tasking memory where the editor works. The editor always
works in the character insert mode with a maximum 1line size
of 79 characters. When the line size is exceeded the cursor

automatically wraps to the next 1line. If there is still
space in the edit buffer, a new line will be inserted. The
screen holds up to 22 (0-21) text lines. Line 22 is left

blank and 1line 23 1is the status line. The status line holds
the current cursor position and 1s wused for displaying
messages and receiving inputs for some commands.

Note : The ED only can work correctly if the terminal is
installed with the ’'ST’ command.

Editor Commands:
1. Help and Status

<CTRL>A Display the on-line help screen.
<ESC>A Display editor status information.

2. Cursor Movement

<CTRL>H Moves the cursor one character position 1left but
does not wrap to the previous line when the left
screen side is reached.

<CTRL>L Moves the cursor one character position right but
does not wrap to the next line when the right
screen side is reached.

<CTRL>J Moves the cursor one line down.

<CTRL>K Moves the cursor one line up.

<CTRL>B Moves the cursor to the beginning of the current
line.

<CTRL>E Moves the cursor to the end of the current line.

<CTRL>U Moves the cursor one page upward and centers the
screen.

<CTRL>N Moves the cursor one page down and centers the
screen.

<CTRL>T Moves the cursor to top of file.

<CTRL>Z Moves the cursor to end of file and centers the
screen.

1-36

3. Text editing

<CTRL>D

<CTRL>0
<CTRL>\

4. Line
<ESC>G
<ESC>S

<ESC>I

5. Text
<CTRL>F
<CTRL>P
6. File
<CTRL>G

<CTRL>W

Deletes one character left from the current
cursor position and wraps to the previous line
when reaches the left screen boundary.

Deletes one character at the current cursor
position and merges the following line to the
current when it is pressed at the end of the
current line.

Deletes the current line.

Deletes from the cursor position to the end of
the current line including the character at the
cursor position.

Buffer

Get the current line into the line buffer without
changing the current line.

Swap the line in the 1line buffer against the
current 1line.

Insert the 1line in the line buffer before the
current 1line.

Pattern search

Find a text pattern, center screen and place
cursor at the end of the found pattern.
Repeat last pattern search.

Operations

Get a file from the disk and reinitialize the
editor.

Write the edit buffer contents to a disk file. An
existing file will be overwritten.

7. Other Functions

<CTRL>T
<CTRL>]

<CTRL>R
<CTRL>V

<ESC>Q

Insert TAB at current cursor position.

Set TAB spacing (default is every 8th column).
Character repeat function. Allowed Kkeys are any
printable character and .

Restarts the editor. All existing text and
initializations are lost.

Quits the editor and returns to VMEPROM.

1.2.28 ER - LIST ERRORS

Format: ER [-c]
ER 0 [-c]
ER <error#>

The LIST ERROR command has three functions. The first one,
with no argument, displays the number of errors found on one
of the following commands:

1) Block Test
2) Block Verify
3) Block Search.

The second format, with the argument "0" resets the above
error count to O.

If the optional parameter [-c] is given when using the first
two formats, an execution count will be displayed or reset to
zero. The execution count will be incremented before it is
displayed.

The third format requires a valid error number as an argument
and displays the VMEPROM error message associated with
<error#>.

Error numbers range as follows:

VMEPROM errors 1- 49
PDOS errors 50— 99
Disk errors 100-299

Example:

? ER

Current error count = 6

? er O

? er 2

Command line argument error
?er 0 —-c

?er —cC
Current error count = 0 Execution count = 1

1.2.29 EV - SET/RESET EVENT Example:

Format: EV 2 EV
EV (-|+}<event> _ 00000000 00000000 00000000 0000FEOO
EV (-[+},<address>,<bit#> EV 128 : TASK 0 SET DELAY = 43 TICS

VMEPROM events are set, reset, or listed with the EV command. 2 EV 10

Both logical and physical events can be accessed with EV. Is 0

The delayed event queue can also be listed or cleared with

the EV command. 2 EV +10
. . . Was O

If the first parameter is zero, the delay gqueue is cleared.

For accessing a logical event, the event number <event> has 2 EV -10

to be entered. If <event> is proceeded by a plus (+) sign, Was 1

the event 1is set and the old status 1s returned. If <event>

is proceeded by a minus (-) sign, the specified event is 2 EV 10

cleared and its old status is displayed. For accessing a Is 0

physical event, the second parameter must be the byte address

followed by the bit number (0-7), where bit 7 is the most 2 EV +,$10000,1

significant bit of the byte. Physical events are set (+), was 0

reset(-) and 1list(_) in the same way as logical events are

accessed. If no special sign is specified, the current ? EV, $10000,1

status of the event is displayed. If <event> is omitted, a Is 1

status list of all events in the system and all pending delay
events are displayed.

The event number has to be entered in decimal.

Current logical event definitions are as follows:

1-63 = Software events 120 = Level 2 lock
64-80 = Software resetting events 121 = Level 3 1lock
81-95 = Output port events 122 = Batch event

96-111 = Input port events 123 = Spooler event
112 = 1/5 second event 124 = Reserved
113 = 1 second event 125 = Reserved
114 = 10 second event 126 = Reserved
115 = 20 second event 127 Virtual ports

116 = Reserved 128 = Local event
117 = Reserved
118 = Reserved
119 = Reserved

1.2.30 FD - File Dump
Format: FD <file>

The File Dump command dumps the contents of a file on the
terminal.

The file contents is displayed in hex and ASCII
representation.

Example:

? fd test

0000 54 68 69 73 20 69 73 20 61 20 73 61 6D 70 6C 65 This is a

0010 20 66 69 6C 65 2E 20 49 74 20 77 61 73 20 63 72 sample file.

0020 65 61 74 65 64 20 75 73 69 6E 67 20 74 68 65 20 It was created

0030 4D 46 20 63 6F 6D 61 6E 64 OD 6F 66 20 56 4D 45 using the MF

0040 50 52 4F 4D 2E 0D FF FF FF FF FF FF FF FF FF FF command of the
VMEPROM.

1-41

1.2.31 FM - FREE MEMORY

Format: FM
FM {(~}<size>

The FREE MEMORY command drops memory from your current task.
If the <size> parameter is positive, then the memory is
deallocated and made available to the system for other task
usage.

If the <size> parameter 1is negative, then the memory is
simply dropped from the current task and is not recoverable.
The size parameter must be entered in decimal.

Example:

? FM
No free memory

? FM 20
20 Kbytes free at address $00071800

. - - l![!y i i . I3 . .
t.2.32 ERMT Format Flo or Winchester Disk If you select either a floppy drive or a Winchester drive
that is already defined, FRMT directly enters the Drive

Format: FRMT Command Menu. If you are installing a new Winchester drive
which 1is currently undefined then you must enter the
- HAR: s ’ A N
FRMT - DISK DWARE FORMAT controller number and drive select Jjumpering (0-3). The
: Drive Command Menu tells you which drive you are currently
Caution: FRMT may only be run when no other tasks are N . .
running. The hardware configuration must be dealing with and has the following commands:
checked before his co: nd : :
* mmand can be executed (See Select Menu : W,W0-W15=Winch; F,FO-F8=Floppy; Q=Quit
CONFIG command). ;
Select Drive : WO[CR]
Description: FRMT allows you to define drives and to WO Main Meng f légarm 2)BadT 3)Form 4)Veri 5)Part 6)Writ P)Togl Q)Quit
format and partition disk drives. VMEPROM Command : {CR]
supports one floppy and up to three . .
Winchester drives for a maximum of four disk Winchester Drive 0 Menu:
controllers. . .
1) Display/Alter drive Parameters.
When you run this command, you may select a 2; DlSplaY/Altir Bad Track List.
drive to access (i.e. F, FO0-F8 for the z 5°rm§t tracks.
floppy diskette drives or W, WO-Wl5, for up) Verify tracks. ROM Disk .
to 16 Winchester drives). Enter the drive 5) Dlgplay/Alter VMEP fM tlsd.Pirtltlons.
letters followed by a [CR] to access the g) ert? out_He;der inro to disk.
drive. Please note that all entries must be) Toggle Unit . h bri
in upper case letters. If the drive is Q) Quit & Select another Drive.

undefined, you will Dbe prompted with the

drive select byte for the controller. W0 Main Menu:

1)Parm 2)BadT 3)Form 4)Veri 5)Part 6)Writ P)Togl Q)Quit

?FRMT
Command:
68K VMEPROM FORCE Format Drive Utilit
16,/03/88 Y When dealing with a floppy drive, the display/alter commands
do not allow you to alter the drive parameters, the bad track
Possible Disk Controllers in this System table, or the disk partitions, and you may not write out
are: v header information to a floppy disk. To exit to VMEPROM, you
must first return to the Select Drive Menu with the Q)

command. Following is a detailed description of the Drive

Controller #1 is not defined
Command Menu commands:

Controller #2 is a FORCE WFC-1
Controller #3 is a FORCE ISCSI-1 . .
1) Display/Alter Drive Parameters:
giéYes that are currently defined in system The Display/Alter Drive Parameters menu allows you to
D)isplay the currently defined drive parameters, A)lter them,
R)ead them in from a file, or Q)uit and exit to the Select

FO is controller #3, drive select byte $73 .
Drive Menu:

Fl1 is controller #3, drive select byte $74
W0 is controller #3, drive select byte $00 . : : .
All not named drivers are undefined. WO Parameteéimﬁigg . A)lter, D)isplay, R)ead file, Qluit

Select Menu: W,W0-W15=Winch; F,F0-F8=Floppy; Q=Quit
Select Drive:

1-43 1-44

To display the current drive parameters on a Winchester, . .
enter the ¢D' command. The parameters are displayed to the As another example, select the WO Winchester and display the
screen. The Drive Parameters that are displayed, and that current parameters:

can be altered are: .
W0 Main Menu:

1)Parm 2)BadT 3)Form 4)Veri 5)Part 6)Writ P)Togl Q)Quit
Command: 1[CR]
WO Parameters: A)lter, D)isplay, R)ead file, Qluit
Command: D[CR]

Current (type) Drive N Parameters:
of Heads = Number of heads on drive
of Cylinders = Number of cylinders on drive
Physical Blocks per Track = Actual blocks on a track
Physical Bytes per Block = Actual bytes per physical block
Shipping Cylinder = Where to position head before
moving drive
Step rate = Controller dependent definition
Reduced write current cyl = Cylinder to apply reduced
write current
Write Precompensate cyl = Cyl to apply write
precompensation

current Winch Drive 0 Parameters:
of Heads = 16
of Cylinders = 1000
Physical Blocks per Track = 32
Physical Bytes per Block = 256
Shipping Cylinder = 0
Step rate = 0
Reduced write current cyl = 0
=0

To alter them, enter the ‘A’ command. In the alter mode, you Write Precompensate cyl

enter either: 1) a carriage return to leave the parameter
the same and go to the next prompt; 2) a number and a
carriage return to change the parameter and go to the

WO Parameters Menu: A)lter, D)isplay, R)ead file, Q)uit
Command: Q[CR]
WO Main Menu: 1)Parm 2)BadT 3)Form 4)Veri 5)Part 6)Writ

previous parameter prompt. The Drive Parameters are -
displayed one at a time for you to either alter or leave P)Togl Q)Quit
alone. Command: _

If you have previously saved out the drive parameters to a 2) Display/Alter Bad Track List:

disk file, you can restore them by entering the ¢R' command, i ,
followed by the name of the file. This file may be created The Display/Alter Bad Track menu allows you to D)isplay the
using the F)ile command of Drive Command Menu option 6) Write currently defined bad tracks on the drive (if any), add or
to disk, or it can be created with a VMEPROM editor. The delete tracks, C)lear the Dad track table, get a H)elp
format and syntax of the parameter file is discussed under message, or Q)uit and exit to the Drive Command Menu:

option 6). Reading this information destroys all other
information; replaces the parameters, the bad track table,
and the partition definitions.

WO Bad Tracks Menu: Bad Track, D)isplay, C)lear, H)elp, Qluit
Command:

To display the current bad tracks on a Winchester, enter the

The ‘Q' command returns you to the Drive Command Menu. . .
¢D* command. The tracks are displayed on the screen 1in
For example, look at floppy drive FO parameters: ascending order as a physical track number followed by the
head and cylinder number, separated by a comma and enclosed
Select Menu : W,WO-W15=Winch; F,F0-F8=Floppy; Q=Quit in parentheses.

Select Drive : FO[CRI] . .
FO Main Menu : 1)Parm 2)BadT 3)Form 4)Veri 5)Part 6)Writ P)Togl Q)Quit To add a bad track to the list, enter either the actual
Command : 1[CR] physical track number and a carriage return, or the head and
cylinder number desired, separated by a comma and followed by

a carriage return. To delete a track, precede the track or

current Floppy Drive 0 Parameters: . . :
head number with a minus sign (-).

of Heads = 2

of Cylinders = 80

Physical Blocks per Track = 16
Physical Bytes per Block = 256
Shipping Cylinder =
Step rate =
Reduced write current cyl =
Write Precompensate cyl =

Sometimes the bad track table may be incorrect or spoiled.
You can start all over again by entering the C)lear table
command. The ¢Q' command returns you to the Drive Command
Menu. In case vyou have added or deleted some bad tracks,
FRMT asks if you want to recalculate the disk partitions on
the drive before returning to the drive menu. By altering
the number of bad tracks, you also alter the number of
logical tracks available for VMEPROM disk partitions. Answer
¢y’ or ‘N’ to the gquery, as you like.

[eNeoReNe)

FO Main Menu:
1)Parm 2)BadT 3)Form 4)Veri 5)Part 6)Writ P)Togl Q)Quit
Command:

1-45

Note that the SCSI Winchesters handle bad blocks internally.
So when vyou are using the ISCSI-1 controller, the bad blocks
defined by the manufacturer are already spared on the disk.

For example, look at the Winchester drive 0 bad track list:

WO Main Menu: 1)Parm 2)BadT 3)Form 4)Veri 5)Part 6)Writ P)Togl
Q)Quit
Command: 2[CR]
WO Bad Tracks Menu: Bad Track, D)isplay, C)lear, H)elp, Qluit
Command: D[CR]

current Winch Drive 0 Bad Tracks:
231(6,77) 613(1,204) 697(1,232) 700(1,233) 703(1,234)

WO Bad Tracks Menu: Bad Track, D)isplay, C)lear, H)elp, Q)uit
Command: Q[CR}
WO Main Menu: 1)Parm 2)BadT 3)Form 4)Veri 5)Part 6)Writ
P)Togl Q)Quit
Command:

3) Format Drive/Tracks:

Sector iInterleave = {default from MCONTB table is listed}
Physical Tracks to Format = {[CR] for beg,end tracks listed}
Ready to Format Drive 0 ? {‘Y’ or ‘N’}

This routine first calls the INFMT routine which sets up the
format. Then F)ormat makes one or more calls to the TKFMT
routine until all the specified tracks are formatted.
Between calls, a check for user break ([CTRL-C]) is made, and
the track number just formatted is printed to the terminal.
If there are errors, you can select either R)etry, Y)es——
add the track to the bad track list, or N)o —-- ignore the
error and go on.

For example, format a floppy disk with the default sector
interleave, 5, and do tracks 0 to 159, inclusive:

Sector Interleave = 5[CR]

Physical Tracks to Format = 0,159{CR]
Ready to FORMAT Floppy Drive 0 ? Y{[CR]
Sector Interleave Table:
1,9,4,12,7,15,2,10,5,13,8,16,3,11,6,14

Issuing Format Drive Command
FORMAT Successfull!

Note that the interleave is "Don'’t care" for SCSI Winchester
drives.

4) Verify Tracks:

Physical Tracks to Verify = {default from last format

command }
Ready ? (‘Y’ or ¢N’}

This routine, after calling INFMT, reads every sector on each
track specified. Errors are reported to the terminal.
Between calls a check for user break ([CTRL-C]) is made, and
the track just verified is printed to the terminal. If there

are errors, you can select either R)etry, Y)es -— add the
track to the bad track list, or N)o -- ignore the error and
go on.

5) Display/Alter Disk Partitions:

The Display/Alter Partitions menu allows you to D)isplay the
currently defined disk partitions, A)lter them, R)ecalculate
them from the current values, or Q)uit and exit to the Drive
Command Menu:

WO Partitions Menu: A)lter, D)isplay, R)ecalc, Qluit
Command:

To display the current disk partitions on a Winchester, enter
the ‘D' command. The partitions are displayed on the screen.
The Disk Partitions that are displayed are based on a few
parameters, which you can change:

of Large partitions = How many large divisions on the drive
of Floppy partitions = How many small divisions on the drive
First track for VMEPROM Parts = Where to begin the disk partitions

Last track for VMEPROM Parts = Where to end the disk partitions

First VMEPROM disk # = What is first VMEPROM disk # of
partitions

To alter them, enter the ‘A’ command. In the alter mode, you
enter either: 1) a carriage return to leave the parameter
the same and go to the next prompt; 2) a number and a
carriage return to change the parameter and go to the next
prompt; or 3) an escape to go to the previous parameter
prompt. The disk partitions parameters are displayed one at
a time for you to either alter or leave alone. If you alter
the number of disks or the tracks for partitions, then you
are asked if you would like to recalculate the partitions.
Enter either ‘Y’ or ¢N’. If you only change the beginning
VMEPROM disk number then only the disk numbers are
reassigned, leaving the base and top tracks of the partitions
alone.

You can make the partition information consistent by simply
entering the *‘R? command. This recalculates the drive
partition information using the current values of drive
parameters, bad track table, and partition parameters. The
«Q* command returns you to the Drive Command Menu.

W0 Main Menu: 1)Parm 2)BadT 3)Form 4)Veri 5)Part 6)Writ P)Togl

QjQuit
Command: 5[CR]

WO Partitions Menu: A)lter, D)isplay, R)ecalc, Qluit

Command: D[CR]

Current Winch Drive 1 Disk Partitions:

of Large Partitions = 10
of Floppy Partitions = 12
First track for VMEPROM Parts = 0
T.ast track for VMEPROM Parts = 15979
First VMEPROM disk # = 2
Total # of Logical Tracks = 16000
Disk # Logical Trks Physical Trks VMEPROM sectors
Base,Top Base,Top Total/{boot}
2 70,1499 00,1500 47968/47776
3 1500,2999 1501,3000 47968/47776
4 3000,4499 3001,4500 47968/47776
24 15880,15959 15897,15979 2528/2336
W0 Partitions Menu: A)lter, D)isplay, R)ecalc, Q)uit
Command: QICR]
W0 Main Menu: 1)Parm 2)BadT 3)Form 4)Veri 5)Part 6)Writ

P)Togl Q)Quit

Command:

6) Write Header Information to Drive:

The Write Header Information to Drive menu allows you to 1)
‘Y’ write the information to the drive header, 2) ‘N’ abort
the command and return to the Drive Command Menu, or 3) ‘F’
write drive information to a file. After assigning the
correct parameters to a drive, entering the bad tracks,
formatting it, and partitioning it into VMEPROM disk numbers,
you still need to write this information to the drive’s
header. This information must reside on the disk and is used
by for the BOOT ROMs and by VMEPROM.

This routine calls the INFMT subroutine to initialize the
controller for the new number of heads and cylinders, and
then calls the WTHED subroutine which writes out the drive
data block (DDB) to the correct sector on the drive, usually
sector 0.

To write this information to the drive, enter the ‘Y’
command. If you have second thoughts, enter the ‘N’ command.

You should save the information out to a floppy disk file for
each Winchester drive. This file makes recovering from
Winchester disasters easier. You can either select to only
write out the file with the ¢F' command, or write the file
out after writing out the header information to the drive.

The file syntax is that:

1) lines starting with an asterisk (*) are ignored as
comments;

2) parameter key words are four characters 1long and
appear as the first four characters of the line;

3) key words are followed by an equal sign (=) and the
value (hex must be preceded with dollar sign ($));

4) bad tracks use the key word TRACK, are followed by an

equals sign, and are designated by either the track
number or the head and cylinder numbers (separated by
a comma) ;

5) order of the key words is not significant, except that
the HEDS definition must precede any TRACK
specification using the head, cylinder format; and

6) any unspecified key word parameters are reset to
system defaults, and not left as previously entered
values.

1-50

The drive parameter key words are defined as follows:

HEDS = # of Heads

CYLS = # of Cylinders

BPTK = Physical Blocks per Track
BPBK = Physical Bytes per Block

SHIP = Shipping Cylinder

STEP Step Rate

REDU Reduced Write Current Cylinder
WRTP = Write Precompensate Cylinder

The disk partition key words are defined as follows:

WPRT = # of Large Partitions

FPRT = # of Floppy Partitions

BTRK = First Track for VMEPROM Parts
ETRK = Last Track for VMEPROM Parts
BDKN = First VMEPROM disk #

While reading in the file wusing the R)ead command of the
1)Parameter menu, FRMT outputs a ¢‘Found:’ messagde, followed
by the parameter value when a successful key word match and
number conversion is made. This indicates that the parameter
was loaded. If a key word match is not made or if the
conversion fails, FRMT echoes the 1line to the terminal
preceded by two gquestion marks (??). This indicates that the
parameter was not loaded.

Q) Select Another Drive:

If you were working with a floppy drive, the Q)uit command
simply returns you to the Drive Select Menu. If you were
working with a Winchester, then the Q)uit command asks
whether or not to write the new drive data block down to low
parameter RAM. Enter either ¢Y’ or ‘N’ to this query. If
you answer ¢N’, your configuring session will be 1lost. It
then exits to the Drive Select Menu.

W0 Main Menu: 1)Parm 2)BadT 3)Form 4)Veri 5)Part 6)Writ P)Togl

Q)Quit
Command: Q[CR]

Exit to Select Drive. Update Param RAM (Y/N) ? Y[CR]

System Parameter RAM Updated!!

Select Menu: W,W0-Wl5=Winch; F,F0-F8=Floppy; Q=Quit
Select Drive: Q[CR]

1.2.33 FS -

FILE SLOT USAGE

Format: FS

The FILE SLO
along with £
opened, it i
are opened,
sequence down
opposite orde
information
indexes.

This data is

Slot
Name
ST
SM
PT
SI
EOF

TN
BF
FLGS

File status i

ST = $8xXX
$4xxXX
$1xxx
SxAXX
SX6XX
$X2XX
SX1XX

Example:

?
S1
64

FS
ot Name
fs1;101/6

T USAGE command lists all files currently open
ile slot information. When the first file is
s assigned slot number 64; as successive files
they are assigned file slots in numerical
to 1. (Read Only Open allocates slots in the
r, from 1 to 32.) The file slot maintains
such as the current file pointers and sector

defined as follows:

File slot #

File name;level/disk #

File status

Current sector in memory

current file pointer

Sector index of SM

Sector index/# of bytes in END-OF-FILE sector

Lock Task/Open Task
Buffer pointer
Lock flag/# Shared

s defined as:

Sector altered $xx80 Altered

File altered $xx04 Contiguous file
Driver in channel $xx02 Delete protect
Read only access $xx01 Write protect

Shared random access
Random access
Sequential access

ST SM PT SI EOF TN BF FLGS
C104 0142 00003916 0000 0000/82 0000 0000389E 00000000

1.2.34

Format:

A user

GO - Start User Program

G

G <address>
GO

GO <address>

program in memory is started with this command. The

start address may be specified on the command 1line, or the
yalue of the program counter, as displayed by the DR command,
is taken if this field is omitted.

The following actions are taken by VMEPROM if this command is
specified:

1)

The processor registers are loaded with the user
values.

2) The first instruction is executed.
3) If any breakpoints are defined, they are inserted in
the user program.
4) The program is continued at the second instruction.
Example:
? G 8000

>>> This is a Test <<<

?

1-54

1.2.35 GD - Start User Program Without Breakpoints

Format: GD
GD <address>

The GD command takes the same actions as the G or GO command,

except that defined breakpoints are ignored

in the user program.
Example:

? GD 8000
>>> This is a Test <<<

?

and not inserted

1.2.36 GM - GET MEMORY

Format: GM
GM <size>

The GM command adds memory to the current task. The amount

of memory is specified by <size>. The <size> parameter has
to be given in decimal. If no parameter follows GM, then all
of the available memory is added. No error is reported if

the memory request cannot be met.
Example:

? FM
No free memory

? FM 20
20 Kbytes free at address $00071800

? GM
? FM
No free memory

?

1.2.37 GOTO - GOTO String

Format: GOTO <string>

The GOTO command is used in procedure files to selectively
process different commands. When the GOTO command is
executed, the procedure file is rewound and all command line
entries are ignored until a match is found with the <string>
parameter and the command line. All preceding command lines
to the match, including the matching command 1line, are
ignored.

Execution continues with the next line.

The console echo flag (ECF$) is set to disable all console
output until a match is found or the procedure file is
exited. It 1is again restored after the label is found.
Labels beginning with an asterisk are recommended since the
monitor ignores them.

Example:

TEST <cr>

*START

BT 100000 300000

? ER

Current error count = 0
? GOTO *START

RSNV

1.2.38 GT - Start User Program with Temporary Breakpoint

Format: GT <breakpoint>
GT <breakpoint>,<address>,<command>

This is almost the same function as the G or GO command,
except that an additional temporary breakpoint is inserted.
This breakpoint is automatically removed if the PC reaches
this breakpoint. If a command is given, it will be executed
at the breakpoint.

Example:

? GT 8020 8000

At temporary breakpoint

0 1 2 3 4 5 6 7

D: 00000000 00000000 00000000 00000100 000066DC 00000000 00000006 00000000
A: 00006290 000766FC 00005060 00006297 000766F0 000066DC 00007000 0005D7FC
VBR = 00000000 CAAR = 00000000 CACR = 00000000 .

*USP = 000767FC SSP = 00007BB2 MSP = 00007890
PC = 00008000 SR = 0000 SFC = 0 DFC =0

?

1.2.39 HELP - HELP

Format: HELP
HELP <command>

The HELP command first displays a short description of all
VMEPROM built-in commands on the terminal. Then a more
detailed description of all commands is displayed.

After every screen full, the output stops. It may be
continued by entering a <cr>. Control is transferred back to
the command interpreter on any key other than <cr>.

If HELP is followed by a command name, a short description of
this command is displayed.

If HELP is followed by one or more characters, but not a
complete command name, a start description of all commands
matching with the given character is displayed.

Example:

? HE M
M <address> [,B|W|L&N&O|E] Modify memory contents

?

1.2.40 IA - IF ALTERED

Format: IA <file name>.<command>

The IF ALTERED command tests and clears the altered file bit
of the directory entry specified by <file name>. If the file
had the alter bit set (indicated in the directory listing by
a '+' under type), then execution of the command line
continues. Otherwise, the rest of the line is ignored.

This command is wuseful 1in assembly procedures to update
object modules when many files are involved and only a few
may have changed.

Example:

? IA test.DT

? DT
16-Mar—-88
16:47:38

? IA test.DT
?

1.2.41 ID - SET SYSTEM DATE/TIME

Format: ID

The SET SYSTEM DATE/TIME command displays the VMEPROM header
and prompts for the date and time. The header shows the

version of VMEPROM and the used CPU-type as displayed after
reset.

The date can be entered in either a day, ASCII month, year
form or numeric month, day, year.

Any delimiter can be used to separate date and time
parameters.)

Pressing [CR] leaves the old date and time.

Example:

? ID

% % sk ok ok ok ok sk %k %k s ok %k Kk ok ok ok sk ok sk 5k %k sk ok ok ok ok sk 3k o ok 3k ok sk ok sk sk ok sk sk ok ok sk ok ok ok ok ok ok ok ke ok ok ok ok ok ok ke

VMEPROM
SYS68K/CPU-20/21 Version 2.0 16-MAR-88

*
*
*
*
(c) FORCE Computers and Eyring Research :
*

*
*
*
*
*
*
ok ok ok ok ok ok sk sk %k sk 5k %k %k Kk ok ok ok ok ok %k % ok ok sk sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ko k

Date=16-Mar-88
Time=16:46:49

1.2.42 INIT - Initialize a Disk for Use with VMEPROM

Format: INIT
INIT <disk>,<directory size>,<disk size>,<disk name>

The INIT command initializes a floppy or Winchester for the
usage with VMEPROM. The disk must be formatted (see FRMT
command) .
The required parameters are:
1. disk number
2. number of directory entries
3. physical size of the disk in number of 256-byte sectors
4. disk name

All parameters may be specified on the command line or may be
entered interactively after the function has been invoked.

Typical values for INIT are:

for floppies: 128 directory entries
2528 sectors

for Winchesters: 512 or 1024 directory entries
dependant on the specification with FRMT,
option 5.

(see FRMT command for details).
Example:

? INIT 9,128,2336,Diskname
Init: Disk # 9
Directory entries: 128
Number of sectors: 2336
Disk name: Diskname

1.2.43 INSTALL - INSTALL UARTS OR DISK DRIVER Each UART entry is defined as follows:

FORMAT: INSTALL [?] UDSR BRA.S UDG ;GET CHARACTER
INSTALL -<U<type>|W<number>> BRA.S UDP ;PUT CHARACTER
INSTALL U<uart type>,<address | filename>[,board base BRA.S UDB ;BAUD UART

address] BRA.S UDR ;RESET UART
INSTALL W,<address | filename>[,board base address] BRA.S ubs ;READ UART STATUS
[,number of desired disks(F/W)|<P>partition BRA.S UHW ;HIGH WATER
list][,partition offset] BRA.S ULW ;LOW WATER
DC.B U0’ ;UART ID
The INSTALL command installs, 1lists or removes device codes BRA. S UDI ; INSTALL
(disk drivers, UARTs). If there 1is no parameter given, all UNAME DS.B 'NAME’ , 0 ;NAME OF DRIVER (ZERO TERMINATED)
installed UARTs and disk drivers are shown. If the first EVEN
parameter is equal to a question mark, all UARTs and disk DC.W $A557 ;MAGIC
drivers, which are already in EPROM, are listed. DC.W P TYP ;PROCESSOR TYP
BRA.W UNINS ;UNINSTALL
INSTALL UARTSs:
P_TYP = %000000000000xxxx
VMEPROM can handle up to eight UART types. Each type has a N\N__ 68000
table of short branches (DSR table) for various subroutines _ 68010
to get, put, baud etc. If a certain UART type is not used in _ 68020
the system, a "NE" status 1is returned for all calls. To __ 68030
install a new UART type, set the first parameter to Ul, U2 up
to Un, where n is the number of UART types in the system. If The INIT call is made by INSTALL in supervisor mode. This
the number is out of range, then an error appears. The routine has the following inputs and outputs:
ability to pick a type is not currently used in the system.
This means that uninstall must first be used with this UART UDI - INSTALL DRIVER
type by preceding the first parameter with a minus sign. IN: Al.L = K1$BEGN
The second parameter can have the filename of the DSR object A2.L = OPTIONAL CARD BASE ADDRESS OR ZERO
code or the base address where the object code starts. In A5.L = SYRAM BASE
case of a filename being written, the INSTALL facility first A6.L = BEGIN OF TCB
loads the object code into memory and preserves that memory. (A7) = RETURN ADDRESS
It then calls the initialization routine for the card and 4 (A7) = RAM ADDRESS IN GLOBAL DSR TABLE
enters a Jjump table for this UART into a global jump table OUT: DO.W = -1 ERROR
for UARTSs. In this case, the UART type ALSO reserved a small NUMBER OF CARDS

RAM area of maximum 64 bytes.
VMEPROM also supports an uninstall routine with following inputs:

The optional third parameter, <board base address>, is the

base address of the first card of the new type, as jumpered UNINS - UNINSTALL DRIVER

in the system. The DSR table has the same entries as the IN: (A7) = RETURN ADDRESS

standard PDOS UART type, with the following additions. The 4(A7) = RAM ADDRESS IN DSRTAB

data word just after the DSR table must contain the

characters "UO"(Uzero), the word just after that must have a INSTALL DISK DRIVER:

BRA.S 1INIT branch to the card initialization routine. The

INSTALL assumes that after the initialize call that there is VMEPROM handles up to four disk drivers linked in a driver

a string, null terminated, which describes the UART type. list. To install a new disk driver set the first parameter
Lo W. If the device code is resident any where in memory or

If VMEPROM finds the magic word $A557 there after, an EPROM, the second assignment <address|filename> should be the
start address of the driver. If a filename is given, the

uninstall will be supported.
INSTALL facility first allocates memory and loads the object

code into memory. Then INSTALL calls the initialization
routine (INIT) for the disk controller and enter the new disk
driver into the driver 1list. If there are already four disk
driver installed an error will occur and you first had to
uninstall any driver by setting the first parameter to -Wn. n
is the number of the disk driver given in a list, when you
call INSTALL without parameters. The third up to the fifth
assignment are optional parameters.

1-63 1-64

The <base address> 1is the base address of the card as
jumpered in system. The fourth parameter <number of desired
disks | <«P>partition list> allows you to select only one or
more physical disks (FLOPPY/HARD DISKS) or by preceding a P
to select one or more logical disks. If no fourth parameter
is given the driver will handle all disks are found (maximum
2 FLOPPY DISKS and 4 HARD DISKS for each driver). The fifth
parameter <partition offset> 1is an offset added to all
logical partition numbers for that driver. Each installable
disk file must have a specific structure on top of file that
helps INSTALL to handle them. There are two structures
handled by VMEPROM. If there 1is any write protect for the
object code of the disk driver (i.e. the code is in EPROM),
the driver file must have the following structure:

IDENTIFIER
INIT DISK
DISK OFF

WBEG DC.W WO ?
BRA.S INIT
BRA.L XDOF
NOP
NOP
NOP
BRA.L XREAD ; READ SECTOR
NOP
NOP
NOP
BRA.L XWRIT ; WRITE SECTOR
NOP
NOP
NOP
DC.B 'WSAMPLE’ , 0
EVEN

If there is no write protect the driver file can also have
the following structure (like as used by PDOS), and VMEPROM
will overwrite all BSR with a BRA.

(PROVIDE ADDRESS AT INSTALL TIME)
READ SECTOR

WBEG DC.W WO ? ; IDENTIFIER
BRA.S INIT ; INIT DISK
BSR.L XDOF ; DISK OFF
JMP $SO.L ; OLD DISK OFF ROUTINE

BSR.L XREAD

JMP $0.L

BSR.L XWRIT ; WRITE SECTOR
JMP $0.L

DC.B 'WSAMPLE' ,0

EVEN

The driver file always starts with an identifier "WO" and
after the 1little jump table INSTALL assumes a string, null
terminated, which describes the driver.

The initialization routine has the following inputs and
outputs:

INIT - INSTALL DISK DRIVER

IN: Al.L = K1S$BEGN
A2.L = OPTIONAL CARD BASE ADDRESS
D7.W = OPTIONAL DISKNR (BY VMEPROM SET TO FFFF)
OUT: DO.W = -1 ERROR
NUMBER OF CARDS

NOTE: The UART for the I/0 devices on-board of the CPU card
are installed by default, but a disk driver is only
installed by default if set by the front panel
switches.

Example:

? INSTALL ?

THE FOLLOWING UARTS AND DISK DRIVER ARE ALREADY IN EPROM:

UART ONBOARD 20 ADDR: S$FF005000

UART FORCE SI0O-1/2 ADDR: S$FF005400

UART FORCE ISIO-1/2 ADDR: SFF005800

DISK FORCE ISCSI-1 ADDR: S$FF005C00

DISK FORCE WFC-1 ADDR: S$FF006400
? INSTALL

THE FOLLOWING DRIVERS ARE INSTALLED:

UART NAME BEGINADDRESS PROCESSOR
Ul ONBOARD 20 S$FF005000 68020/30

DISK NAME BEGINADDRESS F/W FIRSTDISK(W) PHYSICAL DISK

? INSTALL W,80C500,,P3/4/9-11,30
DISK DRIVER FORCE ISCSI-1 INSTALLED

? INSTALL

THE FOLLOWING DRIVERS ARE INSTALLED:

UART NAME BEGINADDRESS PROCESSOR

Ul ONBOARD 20 SFF005000 68020/30

DISK NAME BEGINADDRESS F/W FIRSTDISK(W) PHYSICAL DISK

DRVO FORCE ISCSI-1 S$FF005C00 2/1 33 FO,F1,W0-W3
1-66

1.2.44 KM - KILL MESSAGE

Format: KM
KM <task #>

The KM command removes all task messages associated with
<task #> from the message buffers.

If no task is specified, then all messages associated with
the current task are deleted from the message buffers.

See also 1.2.65 SM — SEND MESSAGE.

1.2.45 KT - KILL TASK

Format: KT
KT {-}<task #>

The KILL TASK command removes a task from the task 1list and
returns the task’s memory to the free pool for use by other
tasks. Only your current task or a task spawned by your task
can be killed. (Task 0 can kill any task except itself or a
task that is kill protected.)

Each task is assigned a unique task number which is shown by
the LIST TASK command. Only the current task (indicated by
’*7) or those spawned by the current task (indicated by
current task number following a "/" character) may be killed.
Task #0 is the system task and cannot be killed.

If a minus sign (-) precedes the task number, then the task’s
memory is not deallocated to the memory bit map. If the task
number is zero, then the current task 1is killed without
deallocating memory.

If no parameter is given, then the current task is killed and
memory is deallocated.

All open files associated with the killed task are closed by
the KT command.

Example:

? LT

task pri evl/ev2 size tch eom ports

name

*0/0 64 352 00007000 0005D000 1/1/0/0/0 1t
1/0 64 98 100 0005D000 00076000 2/2/0/0/0

? KT 1

? LT

task pri evl/ev2 size tch eom ports

name

*0/0 64 352 00007000 0005D00OO0 1/1/0/0/0 1t

?

1.2.46 LC - LIST DIRECTORY

Format: LC <file 1list>

The LIST DIRECTORY command displays a selected list of disk
file names. The file names are printed in a compressed format
with 5 names on every line.

The files are selectively 1listed according to file name,
extension, level, disk number, file attribute, or date of
last change.

The format of the <file list> is defined as follows:

<file list> = {file}!:ext)}{;level}{/disk}{/select...}
where: {file} = 1 to 8 characters (1st alpha) (@=all,*=wild)
{:ext} = 1 to 3 characters (:@=all,*=wild)
{;level) = directory level (;@=all)
{/disk} = disk number ranging from 0 to 255
{/selecti = /AC = Assign Console file

/BN = Binary file

/BX = VMEPROM BASIC token file

/EX = VMEPROM BASIC file

/OB = 68000 VMEPROM object file

/SY = System file

/TX = Text file

/DR = System I/O driver

/* = Delete protected

/** = Delete and write protected

/Fdy-mon-yr = selects files with date of
last change greater than
or equal to 'dy-mon-yr’.
/Fmn/dy/yr format can also
be used.

/Tdy-mon-yr = selects files with date of
last change 1less than or
equal to ’dy-mon-yr’.
/Tmn/dy/yr format can also

be used.
In the st specification, the '@’ character indicates
all subseguent characters match and the ’'*' character is a

single character wild card.

Alsc displayed with each directory listing is the disk name,
the number of files stored on the disk and the number of
directory entries available. This information is useful in
disk maintenance. The directory entries are not necessarily
in alphabetical order but in the order they are stored in the
disk directory.

See also: 1.2.49 LS - List directory sequential
Example:
? LC
test iv 1s 1ic
Number of files: 4 Sectors allocated: 5
ol
1-69

1.2.47 LD - LOAD FILE

Format: LD <file name>
LD <file name>,<start address>

The LOAD FILE command loads a file into memory but does not
begin executing it. The file must be of the type 'Sy’. The
starting load address is optionally specified by <start
address>. Otherwise it defaults to immediately following the
TCB.

This command can be used to debug files, load multiple files
or to load programs outside of known tasking memory.

The LOAD FILE command uses the XLDF primitive and loads Sy’
files four bytes at a time. As a result, as many as three
extra bytes may be loaded.

Example:

? 1d testl,8000
? di 8000 5

8000 NOP
8002 NOP
8004 NOP
8006 NOP
8008 NOP

?

i.2.48 LG - Load S-record

Format: LO
LO <address> , <command line>,<-V|-T>

The LO command loads a S-rec -d into memory from the standard
input port. Normal I/O redirection may be used for input from
other ports. The starting load address is optionally
specified by <address>.

An optional command line may be specified which 1is sent to
the host before the load of the S - record starts. This can
be used to initiate the download in the host system, without
having to use the TM Command.

There are two possible options which must be proceeded by a
minus sign. If option V is given, the contents of the
S-records will only be compared with the contents of those
memory locations which are to be loaded.

The different values of the memory locations and the S-record
data are displayed.

If option T is given without an address parameter, the
S-records are loaded immediately following the TCB.

The following S-record types are supported by VMEPROM:

Se¢ Start record, it is ignored by VMEPROM and
may be omitted.

S1 Data record with 16 bit address field

S2 Data record with 24 bit address field

S3 Data record with 32 bit address field

s7 End record with 32 bit address field

S8 End record with 24 bit address field

S9 End record with 16 bit address field

Tf the address for the LO command is specified on the command
iine, the address fields in the data records are ignored and
the S-record is loaded contiguously from the specified
address upwards.

If the address field of the end record is equal, 0 control is
transferred back to the command interpreter of VMEPROM. If
the address file holds an address, VMEPROM automatically
executes a "G address" command after the S-record is loaded
and an end record is found. Because of the "G" command all
breakpoints which are defined are inserted in the program.

See also: 1.2.26 DU - Dump S-records
Example:

? lo <2 8800
?

1.2.49 LS - LIST DIRECTORY
Format: LS <file list>

T@e LIST DIRECTORY command displays a selected list of disk
file names. The file 1listing also includes the directory
level! file type, file size, start sector address, date of
creation, and date of last update.

The f%les are selectively 1listed according to file name,
extension, level, disk number, file attribute, or date of
last change.

The format of the <file list> is defined as follows:

<file list> = {file){:ext}{;level}{/disk}{/select...}
where: {file} = 1 to 8 characters (lst alpha) (@=all,*=wild)
{:ext} = 1 to 3 characters (:@=all,*=wild)
{;level} = directory level {(;@=all)
{/disk} = disk number ranging from 0 to 255
{/select) = /AC = Assign Console file

/BN = Binary file

/BX = VMEPROM BASIC token file

/EX = VMEPROM BASIC file

/OB = 68000 VMEPROM object file

/SY = System file

/TX = Text file

/DR = System I,/0 driver

/* = Delete protected

/**x = Delete and write protected

/Fdy-mon-yr = selects files with date of
last change greater than
or equal to 'dy-mon-yr’.

/Fmn/dy/yr format can also be used.

/Tdy-mon-yr = selects files with date of
last change less than or
equal to ’'dy-mon-yr’'.

/Tmn/dy/yr format can also be used.

In the file list specification, the '@’ character indicates
all subsequent characters match and the ’*’ character is a
single character wild card.

Also displayed with each directory listing is the disk name,
tpe number of files stored on the disk and the number of
directory entries available.

This information is useful in disk maintenance.

The directory entries are not necessarily in alphabetical

order but in the order they are stored in the disk directory.

See also: 1.2.46 LC - List Directory

Example:

? LS

Lev Name:ext Type
102 test C

102 1v +C

102 1s C

Number of files: 3

?

Siz
1
1
1

e Sect Date created
013B 00:50 16-Mar-88 00:51 16-Mar-88
0145 00:56 16-Mar—-88 00:56 16-Mar-88
0146 00:56 16-Mar-88 00:56 16-Mar-88

Sectors allocated:

3

Last update

1.2.50 LT - LIST TASKS
Format: LT

The LT command displays all tasks currently in the task list
to the console. Task 0 1is the system task and is created
automatically during system initialization. This task cannot
be killed.

Your current task is indicated by an '*’ preceding the task
number. Following the task number is a slash and the parent
task number. Subsequent data provides the current status of
each task and is defined as follows:

task {*=current }Task #/parent task #

pri Task priority (1-255)

evl/ev2 Suspended event(s)

size Task size (k bytes)

tcbh Task control Block

eom End of memory

ports Task I,/0 ports in the following order:

input port/output port/Unit 2 port/Unit 4
port/Unit 8 port

name The name of the command currently executing
Example:
? LT
task pri evl/ev2 size tch eom ports name
*0/0 64 352 00007000 0005D000 1/1/0/0/0 1t

?

1.2.51 LV - DIRECTQORY LEVEL

Format: LV
LV <level>

The DIRECTORY LEVEL command displays or _seps the currgnt
directory level used in directory 1listings and file

definitions.

The DIRECTORY LEVEL command without any argument displayg Fhe
current directory 1level. A file defined without a specified

directory level is defined on the current level.

If an argument is specified, it is converted to a number and
sets the current directory level.

The range is from 0 to 255 in decimal.

The disk directory is soft partitioned into 256 different
groups, facilitating file maintenance. A soft partition
means that any file is accessible from any current level. It
also means that file names must be unique for each disk
number (disk directory).

Example:

? LV
Level = 103

?2 LV 100

? LV
Level = 100

?

1-75

Zmotrsw

1.2.52 M - Modify Memory

Format: M <address>[,<option>]
MM <address>|[,<option>]

Option is B | W | L &« N & O | E

The Modify Memory command 1is used to inspect and change
memory locations. Several options are allowed on the command
line to specify the size of the memory and the access type.
The following options are allowed:

memory is byte sized (8 bits).

memory is word sized (16 bits). This is the default.

memory is long word sized (32 bits).

memory is byte sized and on odd addresses only.

memory is byte sized and on even addresses only.

memory is write only, the current contents is not displayed.

The O0dd and Even options are overriding the B/W/L options.
The N (no read) option has to be specified after the size
qualifier and after the O0dd/Even specification. All memory
accesses check that the write access was successful by
performing a read after the write unless N 1is specified. If
the data written and the data read do not match, the command
is terminated and an error message is displayed.

The memory modify command supports a number of sub-commands,
which can be entered instead of a new memory value. These
sub-commands do not change the access option specified on the
command line.

The following sub-commands are supported:
<cr> open next location

= open same location again
- open previous location

—<count> go back <count> bytes
+ open next location
+<count> go forward <count> bytes

#<address> open new absolute address
?<mnemonic> insert 68000 opcode at current address
exit to the command interpreter

Example:

? M 8000

8000 4246 : <Ccr>

8002 1C2E : <cr>

8004 0441 : <cr>

8006 4247 : ?nop<cr>
8008 AO5A : -2<cr>
8006 4E71 : —<cr>
8004 0441 : #8000<cr>
8000 4246 : <Cr>

8002 1C2E :

1.2.53 MD - Display Memory

Format: MD <address>
MD <address>[,<count>]

The MD command displays the memory contents of the specified

address. The data is displayed in hex

and ASCII

representation, 16 bytes on every line. If the hex value

cannot be displayed in ASCII representation,
(".") is displayed instead.

full stop

If no count is specified on the command line, the Display

Memory command displays 16 lines, representing

256 bytes of

data, and prompts the user to display more or to return to

the command interpreter.

If a carriage return (<cr>) is entered, the next 256 bytes
are displayed. Any other character returns control back to

the command interpreter of VMEPROM.

If a count is specified on the command line, the

value is

interpreted as the number of bytes to be displayed. All

values are assumed to be in hex.

Example:

? MD 8000 30

8000 42 46 1C 2E 04 41 4E 71 A0 5A 63 12 A0 56 63 08
8010 3C 01 A0 5A 63 34 60 2A A0 8C 02 5B A0 OE A0 8C
8020 01 CO A0 8C 01 F1 A0 80 66 OA 42 81 32 06 A0 50

?

1.2.54 MF - MAKE FILE
Format: MF <file>

The MF command allows an ASCII file to be created <from the
user console. The <file> must be previously defined or
preceded by a '#'. The normal line editing is permitted but
once a return key has been entered, the line is written to
the file.

A [CTRL-C] cancels the line without writing it to the file.
An [ESC] terminates the process, closes the file, and returns
to the VMEPROM monitor.

The MF command uses the XGLB primitive and hence, normal
editing control characters are available and 1lines are
limited to 78 characters. Control characters other than
those used for editing cannot be entered (i.e. this includes
a TAB character.)

Example:

? MF test

This is a test file to show the<cr>
functionality<cr>

of<cr>

the MF command.<cr>

<esc>

? SF test

This is a test file to show the
functionality

of

the MF command.

?

1.2.55 MS - Set Memory to Constant or String
Format: MS <address>,<datal"string">
This command writes the specified data pattern to memory. The

data may consist of hex numbers and ASCII data in any
combination. The ASCII data must be put in inverted commas.

Example:

? bf 8000 8100 ff b

? ms 8000 "Hello World"0doao0o0

? md 8000 20

8000 48 65 6C 6C 6F 20 57 6F 72 6C 64 0D OA 00 FF FF Hello World
8010 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

?

1.2.56 PROMPT - CHANGE PROMPT SIGN

Format: PROMPT [<data|"string">]

The PROMPT command is used to change the prompt for the current
task in the used specified pattern.

The data may consist of hex numbers and ASCII data in any
combination. The ASCII data must be put in inverted commas.

If no parameter is given, the default VMEPROM prompt "2V will
occur. The user defined prompt sign will be truncated to nine
characters maximum.

Example:

? PROMPT "#"
#

#PROMPT ("HELLO> ")_
HELLO> _

HELLO> PROMPT
2

1.2.57 RC - RESET CONSOLE
Format: RC

The RESET CONSOLE command is used in an Assigned Console
(type=AC) file to terminate the procedure and to revert back
to the system console. This allows for a graceful
termination of the file commands by closing the file and
prompting for a new command.

Since procedure files can be nested, only the current
procedure file is closed.

1.2.58 RD - RAM DISK

Format: RD
RD [-}<unit>[,<size>][,<address>]

The RAM DISK command sets or displays the current RAM disk’s
units, sizes and memory addresses. VMEPROM maintains a RAM
disk list, providing up to 4 RAM disks at any time. Each RAM
disk has a unique disk number and separate memory address.
The RAM disk command allows you to add RAM disks, delete,
renumber and list them. When the address or the size is
changed, the RAM disk must again be initialized. This is
easily be done by preceding the RAM disk wunit by a minus
sign. Otherwise, the INIT command can be used to initialize
the disk.

The default Ram disk setup of VMEPROM is described in the
User's Manual of your CPU - board. If there is no parameter
the current RAM disks are listed showing disk number, size
number in sectors and base address. They may not appear in
the order defined.

The first assignment <unit> specifies the disk number to be
used for the RAM disk. It must be in the range of 0-99.

The argument <size> specifies the size of the RAM disk in
sectors. Each sector has a size of 256 bytes. The given size
will be rounded up to 2 Kbyte boundary. SO a RAM disk of
32 Kbytes will have a size of 128 sectors. If the second
parameter <size> equals zero, then the RAM disk <unit> is
removed from the list. To aid with memory management, if the
<unit> was positive or zero, then the memory that was used by
that RAM disk is deallocated 1in free memory pool for new
tasks or other RAM disks. If <unit> was negative, the memory
is not deallocated. If the second parameter <size> is non
zero, then either a new RAM disk is to be entered into the
list or an existing RAM disk is to be renumbered.

If there is no third assignment <address>, then a new RAM
disk is created of <size> sectors coming from either the free
memory pool, if possible,or from the calling task's memory.
1f there 1is a third parameter <address>, then VMEPROM tries
to find <address> among the currently defined RAM disks. If
there is a match, the new <unit> and <size> replace those of
the current disk at <address>. (no check is made that <size>
is the same.) If there is no matching address, then the new
RAM disk is entered in the 1list, but no memory management is
performed.

Example:

? RD

Ram disk unit = 8, size = 128, address = $00077DFC
? RD -50,100,8800000

? RD

Ram disk unit = 8, size = 128, address = $00077FDC
Ram disk unit = 50, size = 104, address = $00800000

1-82

1.2.59 RM - Modify Processor Registers

Format: RM
RM <register>
RM <register>,<value>

The RM command modifies the processor registers or, if
available, the data registers of the 68881 coprocessor. Three
modes are allowed.

The first mode 1is an interactive mode, which scans all
registers. For each register, the current value is displayed
and the user is prompted to enter a new value. A <cr> leaves
the register unchanged. After a new value or a <cr> has been
entered, the same procedure will be started for the next
register. 1If an <ESCAPE> or <.> has been entered, control is
transferred back to the command interpreter.

The second mode needs only requires a change in the register
specified. The current value is then displayed and the user
is prompted to enter a new value. A <cr> leaves the register
unchanged. After a new value oOr a <cr> has been entered,
control is transferred back to the command interpreter.

The third mode allows the specification of the new new value
for the given register on the command line and does not
display the the old value.

The following registers may be modified by the user:

VBR Vector base register, only on 68010/68020/68030
systems

SFC/DFC Source and Destination function code register

CAAR CACHE address register, only for 68020/68030
systems

CACR CACHE control register, only for 68020/68030
systems

PC Program counter

SR Status register

usp User Stack pointer

SSP System Stack pointer

MSP Master Stack pointer, only on 68020/68030 systems

DO-D7 Data registers DO-D7

A0-A7 Address registers AO-A7, where A7 is the current

stack

pointer as defined by the status register
FPO-FP7 Floating point Coprocessor registers, if
available.

Caution: Be careful when modifying the Vector Base
register (VBR) as VMEPROM is a interrupt driven
system and any modifications to this register may
crash the system.

Example:
? RM DO
DO = 00000000 : 12345678<cr>
? RM D1 1000
? DR
0 1 2 3 4 5 6 7

D: 12345678 00001000 00000000 00000100 000066DC 00000010 00000006 00000000
A: 00006290 0005D6FC 00005000 00006297 0005D6F0 000066DC 00007000 000SD7FC

VBR = 00000000 CAAR = 00000000 CACR = 00000000
*USP = 000767FC SSP = 00007BB2 MSP = 00007890

PC = 00008000 SR = 0000 SFC =0 DFC =0

? RM FPO

FPO = 0.00000000 E+000 : 1234.56E-24<cr>

? DRF

FPO: 1.23456000 E-021 0.00000000 E+000 0.00000000 E+000 0.00000000 E+000
FP4: 0.00000000 E+000 0.00000000 E+000 0.00000000 E+000 0.00000000 E+000
5

1.2.60 RN - RENAME FILE

Format: RN <filel>,<file2>
RN <filel>,<level>

The RENAME FILE command changes the file name stored in the
disk file directory. The RENAME command may also be used to
move a file from one directory level to another. The file
<filel> is renamed to <file2>. A disk specification in the
second parameter is meaningless. If a number <level> is used
instead of <file2>, the <filel> is moved to the new level.

Example:
? 1c
temn rnt
Number of files: 2 Sectors allocated: 2

? rn temp,templ

? 1c
templ rnl
Number of files: 2 Sectors allocated: 2

1.2.61 RR2 - EPROM Programming

Format: RR2 [<f>,<file>],<board>,<mode>,<option>
RR2 [<m>,<addr>,<cnt>],<board>,<m>,<opt>

The RR2 command is used for programming EPROMS or EPROMS
on a SYS68K/RR-2/RR-3 board. It can also be used to transfer
files or memory contents into a SRAM area on the RR_2 or to
load EPROM/EEPROM contents into the VMEPROM memory.

The following are examples on the usage of the RR2 command:

? RR2 F,FILENAME,RR 2 ADDRESS,MODE,OPTION
if the source is a disk file, or

? RR2 M,STRTADDR,BYTECNT,RR 2 ADDRESS,MODE,OPTION
if the source is in memory.

The following describes the parameters:

F,FILENAME......0oovnn.. source = disk file
F = source flag
FILENAME = the name of the source file
M,STRTADDR,BYTECNT. source = memory
M = source flag
STRTADDR = source start address
BYTECNT = source length in bytes
RR 2 ADDR. ..o vvenenenn the address of the RR_2 bank
= 8 bit mode (single EPROM)
= 16 bit mode (two EPROMS)
32 bit mode (four EPROMS)
= program an EPROM (includes E and V
and a bit test)
= check if EPROM is empty
verify source and EPROM contents
= load EPROM contents to memory

e IS S
]

o<
I

For further information on the hardware setup of the
SYS68K/RR2 or SYS68K/RR3 board please refer to the user’s
manual of the RR-2/3 board.

Example:
? RR2 M,$0,$8000,$800000,2,E
executes an empty check in word mode for EPROM type 27128

(16k x 8) at RR 2 address $800000. The M - source flag and
the memory address are dummy.

2 RR2 F,PROG/2,$800000,4,P
programs EPROMS at address $800000 in 32-bit mode with the
source file PROG from disk 2.

2 RR2 M,$10000,$2000,$800000,1,L. 1loads the contents of an
8k x 8 EPROM at address $800000 into the memory to address
$10000.

1-86

SYS68K/RR-2/RR-3 board configuration:

This example contains the RR-2 board configuration and and
the program usage for 27128 EPROMs in the 16 bit mode.

Jumper settings for 16k x 8 EPROMS on bank 2 (TOSHIBA 27128):

Blb Read time selection on bank 2

8 5
[e] [e]
250 ns

O HO
O H-HO

o} o

4

B2b Write time selection on bank 2

0O 0 00O 50 ms

13
B4b Device type bank 2
4
oo
I EPROM type 1
oo
1
Bl13b Device size bank 2
10 6
0 O 0 0O
IITI 4 x 16k x 8
ocooo0ooo0
1 5
B15 Device pinning bank 2
3 33
0000O0000O0O0O
I I
00000000 O0O0O
I I1I
O 0O 00O OO0O0O0O0O0
1 31
1-87

Page 88 v blank

B17

B18

B19

B12

Enable VPP generator

HOHON

Select VPP bank 2

OHO W

21V

= O

Select output enable on VPP bank 2

Select chip erase bank 2

O w

= C H O

Upper address bank 2

H O
~NO HO ™

S8

O HO

Lower address bank 2

$0

HOHON
o HO
O +HO
~N O HO ®

Program call for subseguent jobs: 1.2.62 RS - RESET DISK

a) EPROM empty check Format: RS
RS <disk #>

2 RR2 M,$0,$8000,$800000,2,E

NN\ \ \ \ __option = empty check Disk files must be closed at the end of any task so that
ANERN \ \ ___mode = word sector buffers are flushed to the disk, pointers updated in
NN\ \ ___ RR-2 base address disk directories, and file slots released for further usage.
N\ __ = byte count (2 EPROMs 16k x 8) The RESET command either closes all open files associated
AN memory address (don’t care) with your task or closes all open files on a specified disk.
source = memory The first mode allows your task to terminate itself without

affecting the files of other tasks, while the second mode is
b) program EPROMS used before withdrawing a disk from a disk drive.
RESET also clears the assigned console FILE ID (ACIS(A6)).
? RR2 F ,MYFILE:PRG/4,$800000,2,P g i

\ \ \ \ _option = program However, the assigned console file may not be closed if the
\ \ \ ___mode = word RESET disk option is used and the file resides on a different
\ \ _ ___ RR-2 base address disk.
\ \ source file name
\ source = file Example:
. ? FS
¢) load EPROMs into memory Slot Name ST SM PT SI EOF TN BF FLGS
? RR2 M,$10000,$8000,$800000,2,L 24RS £51;101/6 C104 0142 00003916 0000 0000/82 0000 0000389E 00000000
\ \ \ \ \ __option = load 2 FS
\ \ \ \ __mode = word Slot Name ST SM PT SI EOF TN BF FLGS
\ \ \ \ RR-2 base address
\ \ \ _ ___byte count(2 EPROMs 16k X 8 2
\ \ . memory address
\ destination = memory

1.2.63 SA - SET FILE ATTRIBUTES

Format: SA <file>
SA <file>,<attributes>

The SET FILE ATTRIBUTES command associates file attributes
with a file in the disk directory. File attributes include
file types and protection flags.

The following file types are supported by VMEPROM:

AC Assign Console, command file.

SY 680x0 executable file, memory image.
TX Text file.

DR Loadable driver.

C Contiguous file. This type can not be set or reset by
the user.
* Delete protected. Allowed in addition to other types.

* % Delete and write protected. Allowed in addition to
other types.

Note: The file type "C" is an addition to the other file
types and is set by VMEPROM. It cannot be set or
cleared by the user.

The following types are not decoded or used by VMEPROM but
may be used:

BN Binary file.
EX Basic file.
BX Basic file.
OB VMEPROM object file.

The following gives a detailed description of all file types
supported by VMEPROM:

1. AC - Assign console. A file typed 'AC® specifies to
VMEPROM that all subsequent requests for a console
character will be intercepted and the character
obtained from the assigned file.

2. sy - System file. A 'SY’ file 1is generated
automatically by the Save File to Memory command. Also
the LD (Load file to memory) command checks for the SY
type. If any program shall be loaded from disk to
memory and be executed, it must have the type SY.

3. TX - ASCII text file. A 'TX’ type classifies a file
as containing ASCII character text.

4. DR - System I/0 driver. A 'DR’ file type is a VMEPROM
system I/0 driver. Channel buffer data is treated as
a program and is used to extend the file system to I/O
devices. The Loadable 1I/0 drivers are described in
detail in the Appendix.

5. * — Delete protect. The file is delete protected and
cannot be deleted from the disk. This file type is an
addition to the other file types.

1-92

6. ** — Delete and write protect. The

deleted or

Example:

SA FILE
SA FILE,SY
SA FILE,**

EVIEVEEVIES)

? LS

Lev Name:ext Type

101 templ +C
Number of files: 1

? SA templ TX

? LS
Lev Name:ext Type
101 templ TX+C

Number of files: 1

?

Size

Size

written to

1

Sect Date created

by any system call.
type is an addition to the other file types.

Clears all attributes (except ’C’)
Sets SY type only

Sets protection only

SA FILE,OB** Sets type and protection

0110 19:47 16-Mar-88

Sectors allocated:

Sect Date created

1

0110 19:47 16-Mar—88

Sectors allocated:

1

file cannot be

This file

Last update

19:47 16-Mar-88

Last update
19:47 16-Mar-88

1.2.64 SF - SHOW FILE
Format: SF {-}<file name>

The SHOW FILE command displays the disk file as specified by

<file name> on your console. The output is paged and
truncated to 78 characters per line unless the file name is
preceded with a minus sign. Pressing [ESC] terminates the

command at any time.

If a minus sign precedes the file name, then the file is
displayed without 1line truncations or paging. Again, [ESC]
terminates the command.

Example:

? SF TEST

This is a test file to show the
functionality

of

the MF command.

?

1.2.65 SM - SEND MESSAGE

Format:
SM <task #>,<message>

The SEND MESSAGE command puts an ASCII text message in a
message buffer. The destination is specified by <task#>.
The message can be up to 63 characters in length.

If a message is sent to itself, 1i.e. the task which is
sending the message, the complete message is interrupted as a
command line and executed.

Note: No other commands can be appended to an ’'SM’ command
with a period, since the <message> parameter takes
everything up to the carriage return.

See also: 1.2.44 KM - KILL MESSAGE.
Example:

? SM 2,Hallo

2 SM 0, LV

? LV
Level=1
?

1.2.66 SP - DISK SPACE

Format: SP
SP <disk #>

The DISK SPACE command displays the current number of defined
files, the total possible directory size, the number of disk
sectors free, the largest possible contiguous file, the
number of disk sectors used, and the number of allocated disk
sectors.

All numbers represent decimal sectors. The total size in
bytes is the number of sectors times 252.

The <disk #> specifies the disk number. If no parameter is
used, then the default disk is displayed.

The 'Files'’ parameter lists the current number of defined
files in the disk directory. This is followed by the maximum
number of files definable in the directory.

The ‘'Free’ parameter shows the number of sectors still
available for file storage. This is followed by the largest
number of contiguous sectors. This is helpful in defining
contiguous files.

The 'Used’ parameter shows exactly how much of the disk is
truly used versus the amount of disk storage allocated. Some
files may have END-OF-FILE markers pointing within the file
and not at the end. If these files were copied to another
disk, the unused storage would be recovered.

Example:

? SP 6

Files= 16/128
Free = 2080/1596
Used = 288/293

?

1.2.67 ST - SET TASK TERMINAL TYPE

Format: ST
ST <type>

The ST command sets the position cursor (PSC$) and clear
screen (CSC$) variables in the task control block (TCB).
This command makes it easy to use various types of terminals
together with VMEPROM. Each task has its own characters for
these two functions, which are initialized, when the task is
started, to the parent task control set.

If a legal <type> is passed in the command 1line, then ST
simply enters the corresponding sequences into the user
status block.

Otherwise, the command prints the following table of options:

D = VT52

L = Lear Siegler ADM3a
KV = VT100

T = TVI 950

U = User defined

Type —

and prompts the wuser for an input. Enter the letter
representing the type of terminal you are using.

The terminal type setup 1is only required for the VMEPROM
screen editor. No other function uses the terminal dependant
sequences.

The default setup of VMEPROM is the codes for a VT52
terminal.

In addition to the built in terminal types, the ST command
allows to enter the values for position cursor, clear screen,
clear to end of screen and clear to end of line interactively
with the "C" option. So nearly every terminal can be used
with VMEPROM.

? St U to to enter a user defined terminal

Enter encoded position cursor value: $.

Now the position cursor code can be entered in hex. The hex
value must be 16 bit. The format of the leading characters
for cursor positioning is as follows (note that each letter

represents a bit):

B111l 1111 0222 2222

B = 0 then $00 bias
1 then $20 bias
0 = 0 then row before column, 1 then column before row
1 = 7 bits for first ASCII lead in character
2 7 bits for second ASCII lead in character

1-97

A value of 0 will result in the code for a VT100 terminal.
Enter encoded clear screen value: $_
The cursor home and clear screen can also be entered as a
encoded 16 bit value. The format is (note that each letter
represents a bit):

E111 1111 E222 2222

E = if 1 then precede with [ESC]

1 = 7 bits for first ASCII character

2 = 7 bits for second ASCII character

If all 16 bits are 0 then a VT100 is selected
Enter encoded clear to end of screen value: $.

This is the code to <clear the access from the current
cursor position to end of screen. The format is:

0111 1111 0222 2222

1
2

7 bit for first ASCII character
7 bit for second ASCII character

Enter encoded clear to end of line value: $_

This is the code to clear from the cursor position to the end
of the line. The format is:

0111 1111 0222 2222

1 = 7 bit for first ASCII character
2 = 7 bit for second ASCII character

Example
? ST
D = VT52
L = Lear Siegler ADM3a
vV = VT100
T = TVI 950
U = User defined
Type = L
? ST D

1.2.68 SV - Save Memory to File

Format: SV <begin>,<end>,<filename>

The SAVE TO FILE command writes binary memory images to the
file specified by <file>. The parameters <begin> and <end>
specify the start and end memory bounds.

The file is created on the disk if it does not exist. The
file gets the file type ’'SY’.

Example:

? SV 8000 8100 file
2

1.2.69 SY - SYSTEM DISK

Format: SY
SY <diskl>{,<disk2>{,<disk3>{,<disk4>}}}

The disk device identifier is contained within the file name.

However, a default or system disks are assigned by the SY
command .

On all open and define commands, file names without the disk
identifier follow the system disk specification order in
looking for the file on disk. All other commands use only
the first system disk specification.

Example:

? SY
System disks : 6

? SY 6,2
? SY
System disks : 6,2

?

1-100

1.2.70 T - Trace Program Execution

Format: T
T <address>
T
TT <address>

The TRACE command starts a user program in trace mode. The
start address may be specified in the command line. If

omitted, the current value of PC as displayed
command is used. The number of instructions to be
defined by the TC (set trace count) command.
after reset is 1 instruction.

After every instruction, the contents of the

by the DR
traced are

The default

processor

registers is displayed along with the disassembled code of
the instruction executed. If no Trace Count is set or it

reached 0, the user is prompted to continue the

return to VMEPROM. Tracing can be continued by
space (" ") or a carriage return (<cr>).

See also: 1.2.71 TC - Set Trace Count
1.2.73 TJ - Trace on change of flow

Example:

? T 8000
Trace

1 2 3 4 5
D: 12345678 00000000 00000000 00000100 000066DC 00000010
A: 00006290 0005D6FC 00005000 00006297 0005D6F0 000066DC
VBR = 00000000 CAAR = 00000000 CACR = 00000000

*USP = 000767FC SSP = 00007BB2 MSP = 00007890
PC = 00008000 SR = 0000 SFC =0 DFC =0
8002 : MOVE.L #$1234,Dl<cr>
Trace
0 1 2 3 4 5

D: 12345678 00001234 00000000 00000100 000066DC 00000010
A: 00006290 0005D6FC 00005000 00006297 0005D6F0 000066DC
VBR = 00000000 CAAR = 00000000 CACR = 00000000

*USP = 000767FC SSP = 00007BB2 MSP = 00007890
PC = 00008000 SR = 0000 SFC = 0 DFC = 0
8008 : MOVE.L D1,D7<cr>
Trace
0 1 2 3 4 5

D: 12345678 00001234 00000000 00000100 000066DC 00000010
A: 00006290 0005D6FC 00005000 00006297 0005D6FO0 000066DC
VBR = 00000000 CAAR = 00000000 CACR = 00000000

*USP = 000767FC SSP = 00007BB2 MSP = 00007890
PC = 00008000 SR = 0000 SFC = 0 DFC = 0
800A : LEA.L ($8100,PC),A0<cr>

Trace

0 1 2 3 4 5
D: 12345678 00001234 00000000 00000100 000066DC 00000010
A: 00006100 0005D6FC 00005000 00006297 0005D6F0 000066DC
VBR = 00000000 CAAR = 00000000 CACR = 00000000
*Usp 000767FC SSP = 00007BB2 MSP = 00007890
PC 00008000 SR = 0000 SFC =0 DFC =0
800E : MOVE.L (A0),DO<cr>

1-101

trace or
entering a

6 7
00000006 00000000
00007000 0005D7FC

6 7
00000006 00000000
00007000 0005D7FC

6 7
00000006 00001234
00007000 0005D7FC

6 7
00000006 00001234
00007000 0005D7FC

Trace

D: 4E714E71 00001234 00000000 00000100 000066DC 00000010 00000006 00001234
A: 00006100-0005D6FC 00005000 00006297 0005D6F0 000066DC 00007000 0005D7FC

VBR
*USp
PC
8010

?

0

00000000
000767FC
00008000
NOP<esc>

CAAR
SSP
SR

2

00000000
00007BB2

0000

3

CACR
MSP
SFC

1-102

00000000
00007890

0

DFC

0

1.2.71 TC - Set Trace Count

Format: TC <count>

The Set Trace Count command sets the number of ingtructions
to be traced continuously. The default after reset is 1.

See also: 1.2.70 T - Trace program execution
1.2.73 TJ - Trace on change of flow

Example:

? TC
Trace count = 0

? TC 100
? TC
Trace count = 100

?

1-103

1.2.72 TIME - Enable/Disable Display of the Program Run Time

Format: TIME
TIME ON
TIME OFF

VMEPROM has the ability to measure the run time of user
programs or command execution of the built in commands. This
feature can be turned on and off with the TIME command. If
only TIME 1is entered, the current status is displayed (i.e.
On or OFF). VMEPROM displays the time in minutes, seconds,
and tens and hundreds of seconds. If time measurement is
enabled, a time stamp is taken whenever the command
interpreter gets a complete input line. The timing stops when
the function is executed and control 1is transferred back to
the command interpreter.

Example:

? TIME
Time 1s off

? TIME ON

? BENCH 1 8000

Bench 1: Decrement long word in memory, 10.000.000 times
Benchmark time = 0:07.23

Programm execution time is 0:07.27

? TIME OFF
?

1-104

1.2.73 TJ - Trace on Change of Flow

Format: TJ
TJ <address>

This command is only supported on 68020 versions. It traces
a user program (like the Trace command), but only on
instructions where a change of program flow occurs. Such
instructions are for example: BRA, BSR, JMP, JSR, RTS etc.

See the Trace command for a complete description of program
tracing.

See also: 1.2.70 T - Trace program execution

Note: This command is only available for 32 bit processors.

1-105

1.2.74 TM - TRANSPARENT MODE

Format: TM <port #>

TM <port #>,<break>

The TRANSPARENT MODE command directs your current input to
<port #>. Input received from <port #> is directed to your

output. This command
systems as if you were

This process continues
This can be changed
<break> parameter.

Caution: Typing *C
currently

effectively allows you to access other
a terminal.

until an [ESC] character is entered.
to another character by adding the

twice will abort every command
in the state of execution. This is

independent of the brake character.

1-106

1.

2.75

Format:

TP

- TASK PRIORITY

TP
TP
TP

<task #>
<task #>,<priority>

The TASK PRIORITY command allows you to change task priority

of different tasks.

and defaults to the current task

is given

The task number is specified by <task #>

if omitted. If no priority

the tasks current priority is displayed. Otherwise

the tasks priority is changed to the given value.

The range of <priority>
highest priority.

evl/ev2

evl/ev2

executes.
Example:
? LT
task pri
*0/0 64
1/0 64
2 TP 0,100
? LT
task pri
*0/0 100
1/0 64

98

98

The

size
354
100

size
354
100

is 1 to
highest

tcb
00007000
0005D800

tchb
00007000
0005D800

1-107

255, the latter being the
priority, ready task always

eom ports name
0005D800 1/1/0/0/0 1t
00076800 2/2/0/0/0

eom ports name
0005D800 1/1/0/0/0 1t
00076800 2/2/0/0/0

1.2.76 UN - CONSOLE UNIT

Format: UN
UN <unit #>

The CONSOLE UNIT command sets the console output unit number.
The unit number selects where the ASCII output is to be
directed. Unit 1 is the system terminal. Unit 2 and 3 are
auxiliary output ports. The Unit 4 is used by VMEPROM for
output redirection and shall not be used.

Example:

? UN
Unit mask

I
—

? UN 3
? UN
Unit mask = 3

? UN 1
?

1-108

1.2.77 2ZM - ZERO MEMORY
Format: ZM

The ZERO MEMORY command clears the entire user work space to
zeros. All flags and pointers are reset.

The memory 1is c¢leared from the end of the TCB up to the
current user stack pointer. The values on the stack are not
destroyed.

Example:

? ZM
2

1-109

