VMEPROM SYSTEM CALLS

fta»4wrakaH+~Fuwrakawrakawraplwkawr4Fawraraw;akaw+~FJHpaPJH}AkawrakdwrakzwrakaerPJH+~h4H»ahaw

WWwwwwwN -

WOoOoJOU bW

wwwwuwww

TABLE OF CONTENTS

VMEPROM SYSTEM CALLS .

General Information . . .
Assembly Language Calls
Description of Kernel Pr1m1t1ves
X881 — SAVE 68881 ENABLE

XAPF - APPEND FILE .

XBCP - BAUD CONSOLE PORT

XCBC - CHECK FOR BREAK CHARACTER

XCBD - CONVERT BINARY TO DECIMAL
XCBH - CONVERT BINARY TO HEX

XCBM - CONVERT TO DECIMAL W/MESSAGE

XCBP - CHECK FOR BREAK OR PAUSE

XCBX - CONVERT TO DECIMAL IN BUFFER

XCDB - CONVERT ASCII TO BINARY
XCFA - CLOSE FILE W/ATTRIBUTE

XCHX - CONVERT BINARY TO HEX IN BUFFER

XCLF - CLOSE FILE « e e e e
XCLS - CLEAR SCREEN

XCPY - COPY FILE
XCTB - CREATE TASK BLOCK N
XDEV - DELAY SET/RESET EVENT
XDFL - DEFINE FILE
XDLF¥ - DELETE FILE

XDMP - DUMP MEMORY FROM STACK
XDPE - DELAY PHYSICAL EVENT
XDTV - DEFINE TRAP VECTORS

XERR - RETURN ERROR DO TO VMEPROM

XEXC - EXECUTE PDOS CALL D7.W
XEXT - EXIT TO VMEPROM

XFAC - FILE ALTERED CHECK

XFBF - FLUSH BUFFERS

XFFN - FIX FILE NAME

XFTD - FIX TIME & DATE

XFUM - FREE USER MEMORY

XGCB — CONDITIONAL GET CHARACTER
XGCC - GET CHARACTER CONDITIONAL
XGCP - GET PORT CHARACTER

XGCR — GET CHARACTER

XGLB - GET LINE IN BUFFER

XGLM - GET LINE IN MONITOR BUFFER

XGLU - GET LINE IN USER BUFFER
XGML - GET MEMORY LIMITS
XGMP - GET MESSAGE POINTER
XGNP - GET NEXT PARAMETER
XGTM - GET TASK MESSAGE
XGUM - GET USER MEMORY
XISE - INITIALIZE SECTOR
XKTB - KILL TASK .
XKTM - KILL TASK MESSAGE
XLDF - LOAD FILE

XLER - LOAD ERROR REGISTER

XLFN - LOOK FOR NAME IN FILE SLOTS

XLKF - LOCK FILE

XLKT - LOCK TASK .

XLSR - LOAD STATUS REGISTER
XNOP - OPEN SHARED RANDOM FILE
XPAD - PACK ASCII DATE

.

[S S S WP
|

k‘T‘H
bt b b ||
N OWENNDN

(S
[

bt

)

1-15
1-16
1-17
1-18
1-19
1-20
1-21
1-22
1-24
1-25
1-26
1-27
1-28
1-29
1-31
1-32
1-33
1-34
1-35
1-36
1-37
1-38
1-39
1-40
1-41
1-42
1-43
1-44
1-45
1-46
1-47
1-48
1-49
1-50
1-51
1-52
1-53
1-54
1-55
1-56
1-57
1-58
1-59
1-60
1-61

kel el e e e e e e e e e N el e i e e e R S R O S O S S T G U TR AR

uwwwwuwwwwwwwwwwwwwwwwmwwwwwwwwwwwwwwwwwwwwwwwuwwwwwwwwwww

.54
.55
.56
.57
.58
.59
.60
.61
.62
.63
.64
.65
.66
.67
.68
.69
.70
.71
.72
.73
.74
.75
.76
.77
.78
.79
.80
.81
.82
.83
.84
.85
.86
.87
.88
.89
.90
.91
.92
.93
.94
.95
.96
.97
.98
.99
.100
.101
.102
.103
.104
.105
.106
.107
.108
.109
.110
111

XPBC
XPCC
XPCL
XPCP
XPCR
XPDC
XPEL
XPEM
XPLC
XPMC
XPSC
XPSF
XPSP
XRBF
XRCN
XRCP
XRDE
XRDM
XRDN
XRDT
XRFA
XRFP
XRLF
XRNF
XROO
XROP
XRPS
XRSE
XRSR
XRST
XRSZ
XRTE
XRTM
XRTP
XRTS
XRWF
XSEF
XSEV
XSMP
XSOE
XSOp
XSPF
XSTM
XSTP
XSUI
XSUP
XSWP
XSZF
XTAB
XTEF
XTLP
XUAD
XUDT
XULF
XULT
XUSP
XUTM
XVEC

TABLE OF CONTENTS (cont’d)

PUT BUFFER TO CONSOLE
PUT CHARACTER(S) TO CONSOLE Coe .
PUT CRLF TO CONSOLE . . Coe e
PLACE CHARACTER IN PORT BUFFER

PUT CHARACTER RAW .o

PUT DATA TO CONSOLE . . .

PUT ENCODED LINE TO CONSOLE

PUT ENCODED MESSAGE TO CONSOLE

PUT LINE TO CONSOLE

PUT MESSAGE TO CONSOLE

POSITION CURSOR e e
POSITION FILE
PUT SPACE TO CONSOLE

READ BYTES FROM FILE

RESET CONSOLE INPUTS

READ PORT CURSOR POSITION

READ NEXT DIRECTORY ENTRY

DUMP REGISTERS .

READ DIRECTORY ENTRY BY NAME

READ DATE

READ FILE ATTRIBUTES

READ FILE POSITION

READ LINE FROM FILE

RENAME FILE

OPEN RANDOM READ ONLY FILE

OPEN RANDOM C e e

READ PORT STATUS

READ SECTOR ..

READ STATUS REGISTER e e
RESET DISK . .+ &+ v v v v v« o o o .
READ SECTOR ZERO

RETURN FROM INTERRUPT

READ TIME

READ TIME PARAMETERS

READ TASK STATUS

REWIND FILE

SET EVENT FLAG W, SWAP

SET EVENT FLAG

SEND MESSAGE POINTER

SUSPEND ON PHYSICAL EVENT

OPEN SEQUENTIAL FILE -

SET PORT FLAG
SEND TASK MESSAGE

SET/READ TASK PRIORITY

SUSPEND UNTIL INTERRUPT

ENTER SUPERVISOR MODE

SWAP TO NEXT TASK

GET DISK SIZE

TAB TO COLUMN

TEST EVENT FLAG

TRANSLATE LOGICAL TO PHYSICAL EVENT
UNPACK ASCII DATE)
UNPACK DATE

UNLOCK FILE e e e
UNLOCK TASK . . e e
RETURN TO USER MODE

UNPACK TIME

SET/READ EXCEPTION VECTOR

1-62
1-63
1-64
1-65
1-66
1-67
1-68
1-69
1-70
1-71
1-72
1-73
1-74
1-75
1-76
1-77
1-78
1-79
1-80
1-81
1-82
1-83
1-84
1-85
1-86
1-87
1-88
1-89
1-90
1-91
1-92
1-93
1-94
1-95
1-96
1-97
1-98
1-99
1-100
1-101
1-102
1-103
1-104
1-105
1-106
1-107
1-108
1-109
1-110
1-111
1-112
1-114
1-115
1-116
1-117
1-118
1-119
1-120

e e

WWwwwwwww

112
.113
.114
.115
.116
.117
.118
.119

XWBF
XWDT
XWFA
XWFP
XWLF
XWSE
XWTM
XZFL

TABLE OF CONTENTS (cont’d)

WRITE BYTES TO FILE
WRITE DATE e e .
WRITE FILE ATTRIBUTES
WRITE FILE PARAMETERS
WRITE LINE TO FILE
WRITE SECTOR

WRITE TIME

ZERO FILE

1-121
1-122
1-123
1-124
1-125
1-126
1-127
1-128

1. VMEPROM SYSTEM CALLS

1.1 General Information

PDOS assembly primitives are assembly language system calls
to PDOS. They consist of one word A-line instructions (words
with the first four bits equal to hexadecimal 'A’). PDOS
calls return results in the 68000 status register as well as
regular user registers.

PDOS calls are divided into three categories: namely,
1) system
2) console I/0
3) file support primitives.

The following primitives, which are available in a standard
PDOS operating system environment are not available 1in
VMEPROM:

XBUG Calls the PDOS debugger, this module is not
included in VMEPROM

XCHF PDOS monitor command, not included in VMEPROM
XLST PDOS monitor command, not included in VMEPROM
XBFL PDOS monitor command, not included in VMEPROM
XAIM PDOS monitor command, not included in VMEPROM
XGTP PDOS monitor command, not included in VMEPROM
XEXZ PDOS monitor command, not included in VMEPROM

These primitives give reference to the PDOS Monitor or PDOS
Debugger and these modules are not included in VMEPROM.

The monitor calls XGNP and XPCB of PDOS are emulated by
VMEPROM and perform their expected functions.

1.2 Assembly Language Calls

PDOS assembly primitives are one word A-line instructions
which use the excepticn vector at memory location $00000028.
Most primitives use 68000 registers to pass parameters to and
results from resident PDOS routines.

Example for Trapping an error after a PDOS call:

CALLX LEA.L FILEN(PC) ,Al ;GET FILE NAME

XS0P ;OPEN FILE, ERROR?
BNE.S ERROR ;Y
MOVE.W D1,SLTN(A4) ;N, SAVE SLOT #

PDOS primitives return error conditions in the processor
status register. This facilitates error processing by
allowing your program to do long or short branches on
different error conditions.

PDOS command primitives can be grouped into six levels
according to their function and calling hierarchy. These
levels are System Calls, System Support Calls, Console I/0
Calls, File Support Calls, File Management Calls, and Disk
Access Calls.

Level 1 PDOS primitives consist of system calls that deal
with functions such as swapping, message passing, events,
TRAP vector initialization, etc. The PDOS system calls are
as follows:

XGML - Get memory limits
XGUM - Get user memory
XFUM - Free user memory
XRTS - Read task status
XSTP - Set/read task priority
XLKT - Lock task

XULT - Unlock task

XSWP - Swap to next task
XCTB — Create task block
XKTB - Kill task

XSTM - Send task message

XGTM - Get task message
XKTH - Kill task message
XGMP - CGet message pointer
XSMP - Send message pointer

XSEV - Set event fliag

XSEF - Set event flag w/swap
XTEEF - Test event flag

XDEV - Delay set/reset event
XSUI - Suspend until interrupt
XDTV - Define trap vectors
XSUP - Enter supervisor mode
XUSP - Return to user mode
XRSR - Read status register
XLSR - Load status register
XRTE - Return from interrupt
X881 - 68881 enable

XDMP - Dump memory from stack

1-2

XRDM
XEXC
XLER
XERR
XEXT
XEXZ

Level 2 consists of
processing are their main functions.

and data/time
as follows:

Dump registers

Execute PDOS call D7.W

Load error register

Return error DO to VMEPROM
Exit to VMEPROM

Exit to VMEPROM with command

system support calls.

Data conversion
They are

XCBD - Convert binary to decimal

XCBH - Convert binary to hex

XCBM - Convert to decimal w/message

XCDB - Convert decimal to binary

XCBX - Convert tc decimal in buffer

XCHX - Convert binary to hex in buffer

XRDT - Read date

XRTM - Read time

XRTP - Read time parameters

XFTD - Fix time & date

XPAD - Pack ASCII date

XUAD - Unpack ASCII Date

XUDT - Unpack date

XUTM - Unpack time

XWDT - Write date

XWIM - Write time

XGNP - Get next parameter
Level 3 primitives deal with console 1I/0. Included are
commands for setting the baud rate and other characteristics
of an I/0 port, reading and m*lthg characters or lines,
clearing the screen, positioning the cursor, and monitoring
port status

itional get character
character conditional
Charaeter

t cha‘*ac ter

buffer

monitor buffer
user buffer
console

) to console

V2

Cond
Get
Get
Get
Get

s
|CAS g

8

RO e VRS e B B B A1
(0]
bt
V3

b4 ped b b
pebe pde peds
(0]

§
kb (D
)
(@ NN
ot

£y

raw
conscle

conscle

console

line to console

to console

message to console

O YO0

1y

ine to

message
Put encoded
Clear screen
Position cursor
Tab to column
e port cursor position
aud console port
Set port flag

Rezd
=eal

bt
}
w

XRPS - Read port status
XCBC - Check for break character
XCBP - Check for break or pause

Level 4 primitives are file support calls for the file
manager. However, important functions such as copying files,
appending files, sizing disks, and resetting disks are
included here.

XFFN - Fix file name
XLFN - Look for name in file slots
XBFL - Build file directory list
XRDE - Read next directory entry
XRDN - Read directory entry by name
XAPF - Append file
XCPY - Copy file

LDF - Load file
XRCN - Reset console inputs
XRST - Reset disk
XSZF - Get disk size

vel 5 primitives are the file management calls of PDOS.
ney use the file 1lock (event 120) to prevent conflicts
between multiple tasks. Functions such as defining, deleting,
reading, writing, positioning, and 1locking are supported by
the file manager.

XDFL - Define file
XRNF - Reneme file
XRFA - Read file attributes

XWFA - Write file attributes
XWEP - Write file parameters
XDLE - Delete file

XZ¥L - Zero file

XS0OP - Cpen sequential

XRCO - Open random read only
XRCP - COpen random

XNC? - Open non-exclusive random
XLXE - Lock file

ZULI - Unlock file

I - Read bytes from file
RLEF — Read line from file

XWBF - Write bytes to file
XWLF - Write line to file

XFBEF - Flush buffers
XFAC —~ File altered check

XCFA -~ Close file w/attribute
XCLF - Close file

The final

level

of primitives

read/write logical sector routines
121) is wused to make
prevent multiple commands from

lock (event
controller.

XISE
XRSE
XWSE
XRSZ

Initialize sector

Read sector
Write sector
Read sector zero

is for disk access via the
in the PDOS BIOS. A disk
these calls autonomous and
being sent to the disk

1.3 Description of Kernel Primitives

This chapter gives a detailed description of all Kernel calls
which are available in VMEPROM.

1.3.1 X881 - SAVE 68881 ENABLE

Mnemonic: X881

Value: SA006

Module: MPDOSK1

Format: X881

Description: The SAVE 68881 ENABLE sets the BIOS save

See also: None

Possible Errors:

flag (SVFS$(A6)) thus signaling the PD0OS BIOS
to save and restore 68881 registers and
status during context switches. The save
flag is again cleared by exiting to VMEPROM.

None

1.3.2 XAPF - APPEND FILE

Mnemonic:
Value:
Module:
Format:

Registers:

Note: A

In (A1)

XAPF
SAOAA

MPDOSF

XAPF

<status error return>

(A2)

Il

[CTRL-C] will terminate this primitive and return

Source file name
Destination file name

error -1 in data register DO.

Description:

See also:

The APPEND FILE primitive is used to append
two files together.

The source and destination file names are
pointed to by address registers Al and A2,
respectively. The source file is appended
to the end of the destination file. The
source file is not altered.

None

Possible Errors:

-1
50
53
60
61
68
69

Disk

Break

Invalid file name
File not defined
File space full

File already open
Not PDOS disk

Not enough file slots
errors

1.3.3 XBCP - BAUD CONSOLE PORT

Mnemonic:
Value:
Module:
Format:

Registers:

In

Description:

See also:

Possible Errors:

66

XBCP

SA070

MPDOSK2

XBCP

<status error return>

D2.W = fOPI 8DBS / <port #>
D3.W = Baud rate
D1.W = Port type

D5.L = Port base

The BAUD CONSOLE PORT primitive initializes
any one of the PDOS I/0 ports and binds a
physical UART to a character buffer. The
primitive sets handshaking protocol,
receiver and transmitter baud rates, and
enables receiver interrupts.

Data register D2 selects the port number and
sets (or <clears) the corresponding flag
bits. If D2.W 1is negative, then the
absolute value 1s subsequently used and the
port number is stored in U2PS$(A6).

The right byte of data register D2 (bits
0-7) selects the console port.

The 1left byte of D2.W (bits 8-15) selects
various flag options inciuding *S-*Q and/or
DTR handshaking, receiver parity and
interrupt enable, and 8-bit character I1/0.

The receiver and transmitter baud rates are
initialized to the same value according to
register D3. Register D3 ranges from O to 7
or the corresponding baud rates of 19200,
9600, 4800, 2400, 1200, 600, 300, or 110.

1f data register D4 1is non-zero, then it
selects the port type and register D5
selects the port base address. These
parameters are system-defined and correspond
to the UART module. If register D4 is zero,
there is no change.

1.3.78 XRPS — READ PORT STATUS
1.3.92 XSPF - SET PORT FLAG

Invalid port or baud rate

1.3.4 XCBC - CHECK FOR BREAK CHARACTER

Mnemonic: XCBC
Value: SA072
Module: MPDOSK?2
Format: XCBC

<status return>

Registers: Out S

R = EQ....No break
LO....[CTRL-C], Clear flag & buffer
LT....[ESC], Clear flag
MI....[CTRL-C] or [ESC]

Note: If the ignore control character bit ($02) of the port

flag is se

Description:

t, then XCBC always returns .EQ. status.

The CHECK FOR BREAK CHARACTER primitive
checks the current user input port break
flag (BRKF.(A5)) to see if a break character
has been entered. The PDOS break characters
are [CTRL-C] and the [ESC] key. A [CTRL-C]
sets the port break flag to one, while an
[ESC] character sets the flag to a minus
one. The XCBC primitive samples and clears
this flag. The condition of the break flag
is returned in the status register. An 'LO’
condition indicates a [CTRL-C] has been
entered. The break flag and the input
buffer are cleared. All subsequent
characters entered after the [CTRL-C] and
before the XCBC call are dropped.

All open procedure files are closed and any
system frames are restored. Also, the last
error number flag (LENS) is set to -1 and a

AC? 1is output to the port. An 'LT?
condition indicates an [ESC] character has
been entered. Only the break flag is

cleared and not the input buffer. Thus, the
[ESC] character remains in the buffer.

The [CTRL-C] character is 1interpreted as a
hard break and is used to terminate command
operations. The [ESC] character is a soft
break and remains in the input buffer, even
though the break flag is cleared by the XCBC
primitive. (This allows an editor to use
the [ESC] Xkey for special functions or
command terminatiomn.)

Note: If the ignore control character bit ($02) of the port

flag is se

See also: None

Possible Errors:

t, then XCBC always returns .EQ. status.

None

1.3.5 XCBD - CONVERT BINARY TC DECIMAL

Mnemonic: XCBD
Value: SA050
Module: MPDOSK3
Format: XCBD

Registers: In
Out

Description:

D1.L = Number
(Al)

String

The CONVERT BINARY TO DECIMAL primitive
converts a 32-bit, 2’'s complement number to

a character string. The number to be
converted is passed to XCBD in data register
D1. Address register Al is returned with a

pointer to the converted character string
located in the monitor work buffer (MWBS).

Leading zeros are suppressed and a negative
sign is the first character for negative
numbers. The string is delimited by a null.
The string has a maximum length of 11
characters and ranges from
-2147483648 to 2147483647.

See also: 1.3.9 XCBX - CONVERT TO DECIMAL IN BUFFER.

Possible Errors:

None

1.3.6 XCBH - CONVERT BINARY TO HEX

Mnemonic: XCBH
Value: SA052
Module: MPDOSK3
Format: XCBH
Registers: In D1.L = Number
Out (Al) = String
Description: The CONVERT BINARY TO HEX primitive converts

a 32-bit number to its hexadecimal (base 16)
representation. The number 1is passed in
data register D1 and a pointer to the ASCII
string is returned in address register Al.
The converted string is found in the monitor
work buffer (MWBS) of the task control blcck
and consists of eight hexadecimal characters
followed by a null.

See also: 1.3.12 XCHX - CONVERT BINARY TO HEX IN BUFFER.

Possible Errors:

None

1.3.7 XCBM - CONVERT TO DECIMAIL, W/MESSAGE

Mnemonic: XCBM
Value: SA05
Module: MPDO
Format: XCBM

Registers: In D
Oout (

Description:

See also: None

Possible Errors:

4
SK3
<message>

1.L = Number
Al) String

The CONVERT TO DECIMAL WITH MESSAGE
primitive converts a 32-bit, signed number
to a character string. The output string is
preceded by the string whose PC relative
address is in the operand field of the call.

The string can be up to 20 characters in
length and is terminated by a null
character. The number to be converted is
passed to XCBM in data register D1. Address
register Al 1is returned with a pointer to
the converted character string which is
located in the monitor work buffer (MWBS) of
the task control block.

Leading zeros are suppressed and the result
ranges from —-2147483648 to 2147483647.

The message address 1is a signed 16-bit PC
relative address.

None

1.3.8 XCBP - CHECK FOR BREAK OR PAUSE
Mnemonic: XCBP

Value: SAQ74

Module: MPDOSK?2

Format: XCBP

<status return>

Registers: Out SR = EQ...No character

Note:

LT...[ESC]
LO...[CTRL-C]
NE. . .Pause

If a ’BLT’ instruction does not immediately follow the
XCBP call, then the primitive exits +to PDOS when an
[ESC] character is entered.

If the ignore control character bit ($02) of the port
flag is set, then XCBP always returns .EQ. status.

Description: The CHECK FOR BREAK OR PAUSE primitive looks

for a character from your PRTS(A6) port.
Any non-control character will cause XCBP to
output a pause message and wait for another
character.

The pause message consists of:

[CR]

’Strike any key...’
[CR]

b

[CR].

A [CTRL-C] will abort any assigned console
file and return the status 'LO’. If a ’BLT’
instruction follows the XCBP primitive and
an [ESC] character is entered, then the call
returns with status ‘LT, Otherwise, an
[ESC] will abort your program to VMEPROM.

An 'EQ’ status indicates that no character
was entered. An 'NE’ status indicates a
pause has occurred.

See also: None

Possible Errors: None

1.3.9 XCBX - CONVERT TO DECIMAL IN BUFFER

Mnemonic: XCBX
Value: SAO06A
Module: MPDOSK3
Format: XCBX

Registers: In

Description:

D1.L = Number

(A1) Buffer

The CONVERT TO DECIMAL 1IN BUFFER primitive
converts a 32-bit, 2's complement number to
a character string. The number to be
converted is passed to XCBX in data register
D1. Address register Al points to the
buffer where the converted string is
stored.

Leading zeros are suppressed and a negative
sign 1is the first character for negative
numbers. The string is delimited by a null.

The string has a maximum length of 11
characters and ranges from -2147483648 to
2147483647.

See also: 1.3.5 XCBD - CONVERT BINARY TO DECIMAL.

Possible Errors:

None

1.3.10 XCDB - CONVERT ASCII TO BINARY

Mnemonic: XCDB
Value: SAQ56
Module: MPDOSK3
Format: XCDB
<status return>
Registers: In (Al) = String
Out DO.B = Delimiter
D1.L = Number
(Al) = Updated string
SR = LT....NO number
EQ....# w/0 null delimiter
GT....#

Note: XCDB does

Description:

not check for overflow.

The CONVERT ASCII TO BINARY primitive
converts an ASCII string of characters to a
32-bit, 2’s complement number. The result is
returned in data register D1 while the
status register reflects the conversion
results.

XCDB converts signed decimal, hexadecimal,
or binary numbers.

Hexadecimal numbers are preceded by "S$" and
binary numbers by "%". A "-" indicates a
negative number. There can be no embedded
blanks.

An LT’ status indicates that no conversion
was possible. Data register DO is returned
with the first character and address
register Al points immediately after it.

A 'GT' status 1indicates that a conversion
was made with a null delimiter encountered.
The result 1s returned in data register Dl.
Address register Al is returned with an
updated pointer and register DO is set to
zero.

An 'EQ’ status indicates that a conversion
was made but the ASCII string was not
terminated with a null character.

The result is returned in register Dl and
the non—-numeric, non-null character is
returned in register DO.

Address register A2 has the address of the
next character.

See also: None

Possible Errors:

None

1.3.11 XCFA - CLOSE FILE W/ATTRIBUTE

Mnemonic: XCFA
Value: SAODO
Module: MPDOSF
Format: XCFA

<status error return>

Registers: In D1.W File ID

]

D2.B New attribute
Description: The CLOSE FILE WITH ATTRIBUTES primitive
closes the open file specified by data
register Dl1. At the same time, the file

attributes are updated according to the byte
contents of data register D2.

D2.B = $80 AC or Procedure file

$40 BN or Binary file

$20 OB or 68000 object file

= $10 SY or 68000 memory image

$08 BX or BASIC binary token file
$04 EX or BASIC ASCII file

$02 TX or Text file

$01 DR or System I/O driver

SO0 Clear file attributes

If the file was opened for seguential access
and the file has been updated, then the
END-OF-FILE marker is set at the current
file pointer. If the file was opened for
random or shared access, then the
END-OF-FILE marker is wupdated only 1if the
file has been extended (data was written
after the current END-OF-FILE marker).

The LAST UPDATE is updated to the current
date and time only 1if the file has been
altered.

All files must Dbe closed when opened!
Otherwise, directory information and
possibly even the file itself will be 1lost.

xNote: If the file is not altered, then XCFA will not alter
the file attributes.

See also: 1.3.72 XRFA - READ FILE ATTRIBUTES
1.3.109 XWFA - WRITE FILE ATTRIBUTES
1.3.110 XWFP — WRITE FILE PARAMETERS

Possible Errors:

52 = File not open

59 = Invalid file slot
75 = File locked

Disk errors

1.3.12 XCHX - CONVERT BINARY TO HEX IN BUFFER
Mnemonic: XCHX

Value: SA068

Module: MPDOSK3

Format: XCHX

Registers: In D1.L = Number
(Al) = Output buffer
Description: The CONVERT BINARY TO HEX 1IN BUFFER

primitive converts a 32-bit number

hexadecimal (base 16) representation.
D1 and a

pointer to a buffer in address register Al.

number is passed in data register

The converted string consists of

hexadecimal characters followed by a null.

See also: 1.3.6 XCBH - CONVERT BINARY TO HEX.

Possible Errors: None

OSE FILE

1.3.13 XCLF - CL
Mnemonic: XCLF
Value: SAO0D
Module: MPDO
Format: XCLF

2
SF

<status error return>

Registers: In D

Description:

See also: None

Possible Errors:

1.W = File ID

The CLOSE FILE primitive closes the open
file as specified by the file ID in data
register D1. If the file was opened for
sequential access and the file was updated,
then the END-OF-FILE marker is set at the
current file pointer.

If the file was opened for random or shared
access, then the END-OF-FILE marker 1is
updated only if the file was extended (ie.
data was written after the current
END-OF-FILE marker).

If the file has been altered, the current
date and time is stored in the LAST UPDATE
variable of the file directory. All open
files must be <closed at or Dbefore the
completion of a task (or before disks are
removed from the system)! Otherwise,
directory information is 1lost and possibly
even the file itself.

52 = File not open
59 = Invalid slot #
75 = File locked

Disk erro

rs

1.3.14 XCLS - CLEAR SCREEN

Mnemonic: XCLS
Value: SAQ76
Module: MPDOSK?2
Format: XCLS
Registers: None

Note: The clear

screen characters are located in the user

TCB variable CSCS(A6).

Description:

See also: 1.3.67

Possible Errors:

The CLEAR SCREEN primitive clears the
console screen, homes the cursor, and clears
the column counter. This function 1is
adapted to the +type of console terminals
used in the PDOS system.

The character sequence to clear the screen
is located in the task control Dblock

variable CSCS$S(A6). These characters are
transferred from the parent task to the
spawned task during creation. The initiail

characters come from the BIOS module.

If CSC$ 1is nonzero, then the CLEAR SCREEN
primitive outputs up to four characters:
one or two characters; an [ESC] followed by
a character; or an [ESC], character, [ESC],
and a final character. The one-word format
allows for two characters. The parity bits
cause the [ESC] character to precede each
character.

If CSCS$ is zero, then PDOS makes a call into
the BIOS for custom clear screens. The
entry point is B _CLS beyond the BIOS table.

The ST command maintains the CSC$ field,
although it can be altered under program
controcl.

XRCP — READ PORT CURSOR POSITION

None

1.3.15 XCPY - COPY FILE
Mnemonic: XCPY

Value: SAOAE
Module: MPDOSFE
Format: XCPY

<status error return>

Registers: In (

(A2)

Wote: A [CTRL-C]
error -1 i

Description:

See also: None

Possible Errors:

_l=
50 = Inva
53 = File
60 = File
61 = File
68 =

Source file name
Destination file name

Al)

terminates this primitive and returns the
n register DO.

The COPY FILE primitive copies the source
fiie into the destination file. The source
file is pointed to by address register Al
and the destination file is pointed to by
register AZ2. A [CTRL-C] halts the copy,
prints *'~C' to the console, and returns with
error -1.

The file attributes of the source file are
automatically transferred to the destination
file.

Break file transfer

1id@ file name
not defined
space full

already open

Not PDOS disk
69 = No more file siots
= Position error

Disk errors

1.3.16 XCTB - CREATE TASK BLOCK

Mnemonic: XCTB
Value: SA026
Module: MPDOSK1
Format: XCTB

<status error return>

Registers: In DO.W = Task size (1 Kbyte increments)

D1.W = Task time.B/priority.B
D2.W = I/0 port
(A0) = Optional low memory pointer

(Al) = Optional high memory pointer
(A2) Command line pointer or entry address
Out DO.L = Spawned task number

Note: If DO.W is positive, A0 and Al are undefined.

If DO.W equals zero, then A0 and Al are the new
task's memory bounds and A2 contains the task’s entry
address.

If DO.W 1is negative, then A0 and Al are the new
task’s memory bounds and A2 points to the task’s
command line.

Description:

The CREATE TASK primitive places a new task entry in the PDOS
task list. Memory for the new task comes from either the
parent task or the system memory bit map. Data register DO
controls the creation mode of the new task as well as the

task size. If register DO.W is positive, then the first
available contiguous memory block equal to DO.W (in 1 Kbytes)
is allocated to the new task. If there is not a block big

enough, then the upper memory of the parent task is allocated
to the new task. The parent task’s memory is then reduced by
DO.W x 1 Kbytes. Address register AZ points to the new task

command line. If A2 is zero, then VMEPROM is invoked. If
register DO.W is zero, then registers A0 and Al specify the
new task'’s memory limits. Register A2 specifies the task’s

starting PC. The task control block begins at (A0) and is
immediately followed by an XEXT primitive. The task user
stack pointer is set at (Al). Thus, the new program should
allow $1000 Dbytes at the low end and enough user stack space
at the upper end.

If data register DO.W is negative, then registers A0 and Al
specify the new task’s memory limits. Register A2 points to
the new task command line. (If A2=0, then the VMEPROM is
invoked) . The command 1line is transferred to the spawned
program via a system message buffer. The maximum length of a
command line 1is 64 characters. When the task is scheduled
for the first time, the message buffers are searched for a
command. Messages with a source task equal to SFF are
considered commands and moved to the task’s monitor buffer.
The task CLI then processes the line. If no command message
is found, then the VMEPROM is called directly.

1-22

Data register D1.W specifies the new task’s priority. The
range is from 1 to 255. The larger the number, the higher
the priority.

Data register D2.W specifies the I/0 port to be used by the
new task.

If register D2.W is positive, then the port is available for
both input and output. If register D2.W 1is negative, then
the port 1is used only for output. If register D2.W is zero,
then no port is assigned. Only one task may be assigned to
any one input port while many tasks may be assigned to an
output port. Hence, a port is allocated for input only if it

is available. An invalid port assignment does not result in
an error.
A call is made to DSINT in the debugger module. This

initializes all addresses, registers, breaks, and offsets.
Finally, the spawned task’s number is returned in register
DO.L to the parent task. This can be used later to test task
status or to kill the task.

See also: None

Possible Errors:

72
73

Too many tasks
Not enough memory

1.3.17 XDEV - DELAY SET/RESET EVENT

Mnemonic: XDEV
Value: SAQ032
Module: MPDOSK1
Format: XDEV

<status error return>

Registers: In

Note: If DO.L=0,

Description:

See also:

]
wwww

Possible Errors:

DO.L = Time
D1.B = Event (+=Set, —-=Reset)

then the D1.B event is cleared.

The DELAY SET/RESET EVENT primitive places a
timed event in a system stack controlled
by the system clock. Data register DO.L
specifies the time interval in clock tics.
When it counts to zero, then the event D1.B
is set if positive, or reset if negative.

If the event already exists in the stack, it
is replaced by the new entry. If the time
specified in DO equals zero, then any
pending timed event equal to D1.B is deleted
from the stack.

If D1.B is positive, event D1.B 1is first
cleared. If D1.B is negative, event D1.B is
set before exiting the primitive.

.88 XSEF - SET EVENT FLAG W/SWAP
.89 XSEV - SET EVENT FLAG

.95 XSUI - SUSPEND UNTIL INTERRUPT
.100 XTEF - TEST EVENT FLAG

83 = Delay event stack full

1.3.18 XDFL - DEFINE FILE

Mnemonic: XDFL
Value: SAOD4
Module: MPDOSF
Format: XDFL

Registers: In

Description:

See also:

<status error return>

DO.W
(A1)

of contiguous sectors
File name

The DEFINE FILE primitive creates a new file
entry in a PDOS disk directory, specified by
address register Al. A PDOS file name
consists of an alphabetic character followed
by up to 7 additional characters. An
optional 3 character extension can be added
if preceded by a colon. Likewise, the
directory level and disk number are
optionally specified by a semicolon and
slash respectively. The file name is
terminated with a null.

Data register DO contains the number of
sectors to be initially allocated at file
definition. If register DO is nonzero, then
a contiguous file is created with DO
sectors. Otherwise, only one sector is
allocated. Each sector of allocation
corresponds to 252 bytes of data.

A contiguous file facilitates random access
to file data since PDOS can directly
position to any byte within the file without
having to follow sector links. A contiguous
file is automatically changed to a
non-contiguous file if it 1is extended with
non—-contiguous sectors.

None

Possible Errors:

50
51
55
57
61
68

o
e
n
~

Invalid file name
File already defined
Fragmentation error
File directory full
File already open
Not PDOS disk

errors

1.3.19 XDLF - DELETE FILE

Mnemonic:
Value:
Module:
Format:

Registers:

In

Description:

See also:

XDLF
SAOD
MPDO
XDLF
<sta

(

None

Possible Errors:

50 =

53
58
61
68

Disk

6
SF

tus error return>

Al) = File name

The DELETE FILE primitive removes the file
whose name is pointed to by address register
Al from the disk directory and releases all
sectors associated with that file for use by
other files on that same disk. A file
cannot be deleted 1if it is delete (*) or
write (**) protected.

Invalid file name

File
File
File
Not

erro

not defined

delete or write protected
already open
PDOS disk

rs

1.3.20 XDMP - DUMP MEMORY FROM STACK

Mnemonic: XDMP
Value: SAO04A
Module: MPDOSK3
Format: XDMP
Registers: In USP.L = <# of bytes>.W
<start address>.L

Out USP.L = USP.L + 6

Description: The DUMP MEMORY FROM STACK primitive dumps a

See also: None

Possible Errors:

block of memory to the console as specified
by two parameters on the user stack (USP).
The left side of the output is a hexadecimal
dump and the right side is a masked ($7F)
ASCII dump.

To use this primitive, first push a 32-bit
address and then a 16-bit number of the
amount of memory to be dumped. The
primitive will automatically clean up the
user stack.

None

1.3.21 XDPE - DELAY PHYSICAL EVENT

Mnemonic: XDPE
Value: SAl114
Module: MPDOSK1
Format: XDPE

Event address

Registers: In A0

DO.L = Time TICs for delay (0O=clear entry)
D1.W = Event descriptor
Description: XDPE causes the specified event to be
set/cleared after the specified time has
elapsed. Each event can have only one
delayed action pending. Successive calls
will supersede pending requests. Only the

lower eight bits of the descriptor are used.
To cancel pending actions, specify a delay
time of 0.

The event descriptor is a 16-bit word that
defines both the bit number at the specified
A0 address and the action to take on the
bit. The following bits are defined:

Bit number ——- 15 14 13 12 11 10 9 8 76 5 4 3 2 10
T X X X X XXX SXXXXDBBB
T = Should the bit be toggled on scheduling?
1 = Yes (toggle), 0 = No (do not toggle)

S = Suspend on event bit clear or set
1 = Suspend on SET, 0 = Suspend on CLEAR

BBB = The 680 x 0 bit number to use as an event
X = Reserved, should be 0

Since the bit number is specified in the 1lower
three bits of the descriptor, you may use the
descriptor with the 680 x 0 BTST, BCLR, BSET
instructions.

See also: XDEV - Delay Set/Clear Event
XSOE - Suspend on Physical Event
XTLP - Translate Logical to Physical Event

1.3.22 XDTV - DEFINE TRAP VECTORS

Mnemonic: XDTV
Value: SA024
Module: MPDOSK1
Format: XDTV

TVCZ FEDC BA98 7654 3210
Table base address
Vector table address

Registers: In D1.L
(A0)
(Al)

Vector table: DC.L TRAP #0-<BASE ADR>

DC.L TRAP #15-<BASE ADR>
DC.L ZDIV-<BASE ADR>
DC.L CHK-<BASE ADR>

DC.L TRAPV-<BASE ADR>
DC.L TRACE-<BASE ADR>

Note: The vector table size is variable and each
entry corresponds to non-zero bits in the mask
register (D1.L). Each entry is a long signed
displacement from the base address register.

D1.L = TVCZ FEDCBA9876543210

AN NN _
ANNR NN TRAPs #0-#15
\\\\ Zero divide
\\\ CHK
\\ TRAPV
\ Trace exception

Description:

The DEFINE TRAP VECTORS primitive loads user routine
addresses into the task control block exception vector
variables. Each task has the option to process its own TRAP,
zero divide, CHK, TRAPV, and/or trace exceptions.

Data register D1 selects which vectors are to be loaded
according to individual bits corresponding to vectors in the
vector table pointed to by address register Al. Bits 0
through 19 (right to left) correspond to TRAPs 0 through 15,
zero divide, CHK, TRAPV, and trace exceptions. A 1 bit moves
a vector from the vector table (biased by base address A0)
into the task control block.

When an exception occurs, the task control block is checked
for a corresponding non-zero exception vector. If found,
then the return address is pushed on the user stack (usp)
followed by the exception address and condition codes. PDOS
next moves to user mode and executes a return with condition
codes (RTR). This effectively acts 1like a Jjump subroutine
with the return address on the user stack.

1-29

The trace processing 1is handled differently. If the
processor 1is in supervisor mode when a trace exception
occurs, the trace bit 1is «cleared and the exception is
dismissed. The processor remains in supervisor mode. If the
processor 1is in user mode and there is a non-zero trace
variable in the task control block, then the trace is again
disabled, the trace processor address 1is pushed on the
supervisor stack along with status, and a return from
exception is executed (RTE).

See also:

Possible Errors: None

1.3.23 ZXERR - RETURN ERROR DO TQ VMEPROM

Mnemonic: XERR
Value: SA00C
Module: MPDOSK1
Format: XERR

Registers: In

Description:

See also:

DO.W = Error code

The RETURN ERROR DO TO VMEPROM primitive
exits to VMEPROM and passes an error code in
data register DO. PDOS prints 'PDOS ERR’,
followed by the decimal error number. The
error call can be intercepted by changing
the value of the ERRS variable in the task
TCB. This allows you to customize your own
monitor.

1.3.24 XEXT - EXIT TO VMEPROM

Possible Errors:

None

1.3.24 XEXC - EXECUTE PDOS CALL D7.W

Mnemonic: XEXC

Value: SA030

Module: MPDOSK1

Format: XEXC

Registers: In D7.W = Aline PDOS CALL

Description: The EXECUTE PDOS CALL D7.W primitive
executes a variable PDOS primitive
contained in data register D7. Any
registers or error conditions apply to the
corresponding PDOS call.

See also:

Possible Errors:

Call dependent

1.3.25 ZXEXT - EXIT TO VMEPROM

Mnemonic: XEXT
Value: SAOQE
Module: MPDOSK1
Format: XEXT

(Always exits to VMEPROM)
Registers: None
Description: The EXIT TO VMEPROM primitive exits a user
program and returns to VMEPROM.
The exit can be intercepted by chanagina the
value of the EXTS variable in the task TCB.
This primitive allows you to customize your

own monitor.

See also:
1.3.22 XERR - RETURN ERROR DO TO VMEPROM

Possible Errors: None

1.3.26 XFAC - FI

Mnemonic: XFAC
Value: SAQC
Module: MPDO
Format: XFAC

LE ALTERED CHECK

E
SF

<status error return>

Registers: In (Al) = FILE NAME
Out CC = File not altered
CS = File altered
NE = Error

Description:

See also: None

Possible Errors:

The FILE ALTERED CHECK primitive 1looks at
the altered bit (bit $80) of the file
pointed to by address register Al. If the
bit is zero (not altered), then the
primitive returns with the carry status bit
Clear.

If the alter bit is set (file altered), then
it is cleared and the primitive returns with
carry set. If either case, the bit is always
cleared.

Disk errors

1.3.27 XFBF - FLUSH BUFFERS

Mnemonic: XFBF
Value: SAOFS8
Module: MPDOSF
Format: XFBF
<status error return>
Registers: None
Description: The FLUSH BUFFERS primitive forces all file

slots with active channel buffers to write
any updated data to the disk. It thus does
a checkpoint of any open and altered file.

See also: None

Possible Errors: Disk errors

1.3.28 XFFN - FIX FILE NAME

Mnemonic: XFFN

Value: SAOAO

Module: MPDOSF

Format: XFFN

<status error return>
Registers: In (Al) = File name
Out DO.L = Disks(4th/3rd/2nd/lst)

(Al) = MWBS, Fixed file name

Description: The FIX FILE NAME primitive parses a
character string for file name, extension,
directory 1level, and disk number. The
results are returned 1in the 32-character
monitor work buffer (MWBS$S(A6)). Data
register DO is also returned with the disk
number. The error return is used for an

invalid file name.

The monitor work buffer 1is cleared and the
following assignments are made:

0(Al) = File name
8(Al) = File extension
11(Al) = File directory level

System defaults are used for the disk number
and file directory level when they are not
specified in the file name.

See also: 1.3.70 XRDN - READ DIRECTORY ENTRY BY NAME

Possible Errors:

50 = Invalid file name

1.3.29 XFTD - FIX TIME & DATE

Mnemonic: XFTD
Value: SA058
Module: MPDOSK3
Format: XFTD

Registers: Out

Description:

See also:

.101
.102
.106

b b b
WWwwWwwww

Possible Errors:

DO.W = Hours * 256 + Minutes
D1.W = (Year * 16 + Month) * 32 + Day

The FIX TIME & DATE primitive returns a
two-word encoded time and date generated
from the system timers. The resultant codes
include month, day, year, hours, and
minutes. The ordinal codes can be sorted
and used as inputs to the UNPACK DATE (XUDT)
and UNPACK TIME (XUTM) primitives.

Data register DO.W contains the time and
register D1.W contains the date. This
format is used throughout PDOS for time
stamping items.

.52 XPAD - PACK ASCII DATE
.71 XRDT - READ DATE
.84 XRTM - READ TIME

XUAD - UNPACK ASCII DATE
XUDT - UNPACK DATE
XUTM - UNPACK TIME

None

1.3.30 XFUM - FREE USER MEMORY

Mnemonic:
Value:
Module:
Format:

Registers:

Description:

XFUM

SA040

MPDOSK1

XFUM

<status error return>

In DO.W = Number of K bytes

(AO0) Beginning address

The FREE USER MEMORY primitive deallocates
user memory to the system memory bit map.
Data register DO.W specifies how much memory
is to be deallocated while address register
A0 points to the beginning of the data
block.

Memory thus deallocated 1s available for any
task use including new task creation.

Possible Errors:

79

Memory error

1.3.31 XGCB - CONDITIONAL GET CHARACTER

Mnemonic: XGCB
Value: $AO04
Module: MPDO
Format: XGCB

<sta

Registers: Out D

8
SK2

tus return>

Character in bits 0-7
EQ....No character
LO....[CTRL-C]
LT....[ESC]
MI....[CTRL-C] or [ESC]

0.L
SR

Note: If the ignore control character bit ($02) of the port

flag is se

Description:

Possible Errors:

t, then XGCB ignores [CTRL-C] and [ESC].

The CONDITIONAL GET CHARACTER primitive
checks for a character from first, the
input message pointer (IMPS(A6)), second,
the assigned input file (ACIS(A6)), and then
finally, the interrupt driven input
character buffer (PRT$(A6)). If a character
ijs found, it is returned in the right byte
of data register DO.L and the rest of the
register is cleared.

If there is no input message, no assigned
console port character, and the interrupt
buffer is empty, the status is returned as

'EQ?.

The status is returned 'LO’ and the break
flag cleared if the returned character is a
[CTRL-C]. The input buffer is also cleared.
Thus, all characters entered after the
[CTRL-C] and before the XGCB call are
dropped.

The status 1is returned 'LT’' and the break
flag cleared if the returned character is

the [ESC] character.

For all other characters, the status is
returned 'HI®' and °'GT’. The break flag is
not affected.

None

1.3.32 XGCC - GET CHARACTER CONDITIONAL

Mnemonic: XGCC
Value: SA078
Module: MPDOSK?2
Format: XGCC

<status return>

Registers: Out DO.L

Note: If the ig
flag is se

Description:

Possible Errors:

Character in bits 0-7

SR = EQ....No character
LO....[CTRL-C]
LT....[ESC]
MI....[CTRL-C] or [ESC]

nore control character bit ($02) of the port
t, then XGCC ignores [CTRL-C] and [ESC].

The GET CHARACTER CONDITIONAL primitive
checks the interrupt driven input character
buffer and returns the next character in the
right byte of data register DO.L. The rest
of the register is cleared. The input buffer
is selected by the input port variable
(PRTS) of the TCB.

If the buffer is empty, the 'EQ’ status bit
is set. If the character is a [CTRL-C],
then the break flag and input buffer are
cleared, and the status is returned 'LO’.
If the character 1is the [ESC] character,
then the break flag 1is cleared and the
status 1s returned °'LT’.

If no special character 1s encountered, the
character is returned in register DO and the
status set 'HI®’® and ’GT’.

If no port has been assigned for input (ie.

port O or phantom port), then the routine
always returns an 'EQ’ status.

None

1.3.33 XGCP - GE

Mnemonic: XGCP
Value: SA09
Module: MPDO
Format: XGCP

<sta

Registers: Out D

Note: 1If the ign
flag is se

Description:

Possible Errors:

T PORT CHARACTER
E

SK2

tus return>

0.L = Character in bits 0-7

SR = LO....[CTRL-C]
LT....[ESC]
MI....[CTRL-C] or [ESC]

ore control character bit ($02) of the port
t, then XGCP ignores [CTRL-C] and [ESC].

The GET PORT CHARACTER primitive checks for
a character in the interrupt driven input
character buffer. If a character is found,
it is returned in the right byte of data
register DO.L and the rest of the register
is cleared. The input buffer is selected by
the input port variable (PRTS) of the TCB.

If the interrupt buffer is empty, the task
is suspended pending a character interrupt.

The status is returned 'LO’ and the break
flag cleared 1if the returned character is a
[CTRL-C]. The input buffer is also cleared.
Thus, all characters entered after the
[CTRL-C] and before the XGCR call are
dropped.

The status 1is returned ’'LT’ and the break
flag cleared if the returned character is
the [ESC] character.

For all other characters, the status is
returned 'HI' and 'GT’. The break flag is
not affected.

If no port has been assigned for input, (ie.

port 0 or phantom port), then an error 86
occurs.

None

1.3.34 XGCR - GE

T CHARACTER

Mnemonic: XGCR
Value: SA07
Module: MPDO
Format: XGCR

<sta

Registers: Out D

Note: If the ig
flag is se

Description:

Possible Errors:

A
SK2

tus return>

0.L = Character in bits 0-7

SR = LO....[CTRL-C]
LT....[ESC]
MI....[CTRL-C] or [ESC]

nore control character bit ($02) of the port
t, then XGCR ignores [CTRL-C] and [ESC].

The GET CHARACTER primitive checks for a
Character from first, the input message
pointer (IMPS$(A6)); second, the assigned
input file (ACIS$(A6)); and then finally, the
interrupt driven input character buffer
(PRTS(A6)). If a character is found, it is
returned in the right byte of data register
DO.L and the rest of the register |is
Cleared.

If there is no input message, no assigned
console port character, and the interrupt
buffer 1is empty, the task is suspended
pending a character interrupt.

The status 1is returned 'LO' and the break
flag cleared if the returned character 1is a
[CTRL-C]. The input buffer is also cleared.
Thus, all characters entered after the
[CTRL-C] and before the XGCR call are
dropped.

The status is returned LT’ and the break
flag cleared if the returned character is

the [ESC] character.

For all other <characters, the status is
returned ’'HI’ and 'GT’. The break flag is
not affected.

If no port has been assigned for input, (ie.

port 0 or phantom port), then an error 86
occurs.

None

1.3.35 XGLB - GET LINE IN BUFFER

Mnemonic: XGLB
Value: SA07C
Module: MPDOSK2
Format: XGLB

{BLT.x ESCAPE} optional
<status return>

Registers: In (A1) = Buffer address
Out Dl1.L = Number of characters
SR = EQ...[CR] only

LT...[ESC]
LO...[CTRL-C]

Note: If the ignore control character bit ($02) of the port
flag is set, then XGLB ignores [CTRL-C] and [ESC].

Description:

The GET LINE IN BUFFER primitive gets a
character line into the buffer pointed to by
address register Al. The XGCR primitive is
used by XGLB and hence characters can come
from a memory message, a file, or the task
console port.

The buffer must be at least 80 characters in
length. The line is delimited by a carriage
return. The status returns EQUAL if only a
[CR] is entered.

If an [ESC] is entered, the task exits to
VMEPROM unless a 'BLT’ instruction
immediately follows the XGLB call. If such
is the case, then XGLB returns with status
set at ''LT’.

If the assigned console flag (ACI$(A6)) is
set, then the '&' character 1is used for
character substitutions. '&0' is replaced
with the last system error number. '61? is
replaced with the first parameter of the
command line, '&2' with the second, and so
forth up to ?&9°.

The command line can be edited with various

system defined control characters. A
[BACKSPACE] ($08) moves the cursor one
character to the left. A [CTRL-F] ($0C)
moves the cursor one character to the

right. A [RUB] ($7F) deletes one character
to the 1left. A [CTRL-D] ($04) deletes the
character under the cursor. The cursor need
not be at the end of the line when the [CR]
is entered.

See also: 1.3.36 XGLU - GET LINE IN USER BUFFER

Possible Errors:

None

1-43

».53.26 ZGLM - GET LINE IN MONITOR BUFFER

Mnemonic: XGLM
Value: SAQO7E
Module: MPDOSK2
Format: XGLM

{BLT.x ESCAPE} optional
<status return>

N

Registers: Out (Al)
D1.L
SR

String

Number of characters
EQ...[CR] only
LT...[ESC]
LO...[CTRL-C]

Note: If the ignore control character bit ($02) of the port
flag is set, then XGLM ignores [CTRL-C] and [ESC].

Description:

The GET LINE 1IN MONITOR BUFFER primitive gets a character
line into the monitor buffer located in the task control
block. The XGCR primitive is used by XGLM and hence,
characters can come from a memory message, a file, or the
task console port.

The buffer has a maximum 1length of 80 characters and is
delimited by a carriage return. The status returns EQUAL if

oniy a ([CR] is entered. If an [ESC] is entered, the task
exits to VMEPROM unless a 'BLT' instruction immediately
follows the XGLM call. If such is the case, then XGLM

returns with status set at 'LT?’.

If the assigned console flag (ACI$(A6)) is set, then the ’&?
character 1is wused for character substitutions. '§0’ is
rowiaced with the last system error number. ’&1l? is
repiaced with the first parameter of the command line, '&2?
with the second, and so forth up to '&9°'.

Thne command line can be edited with various system—defined
control characters. A [BACKSPACE] ($08) moves the cursor
one character to the left. A [CTRL-L] ($0C) moves the
cursor one character to the right. A [RUB] ($7F) deletes one
character to the left. A [CTRL-D] ($04) deletes the
character under the cursor. The cursor need not be at the
end of the line when the [CR] is entered.

The last command 1line can be recalled to the buffer by
entering a [CTRL-A] ($01). This 1line can then be edited
using the above control characters.

Possible Errors: None

1.3.37 ZXGLU - GET LINE IN USER BUFFER

Mnemonic: XGLU
Value: SA080
Module: MPDOSK?2
Format: XGLU

{BLT.x ESCAPE ;optionall
<status return>

Registers: Out (Al) = String
D1.L = Number of characters
SR = EQ...[CR] only

LT...[ESC]
LO...[CTRL-C]

Note: If the ignore control character bit ($02) of the port
flag is set, then XGLU ignores [CTRL-C] and [ESC].

Description:

The GET LINE IN USER BUFFER primitive gets a character 1line
into the user buffer. Address register A6 normally points

to the wuser buffer. The XGCR primitive is used by XGLU;
hence, characters come from a memory message, a file, or the
task console port. The line is delimited by a carriage

return. The status returns EQUAL if only a [CR] is entered.
Address register Al is returned with a pointer to the first
character.

The user buffer is located at the beginning of the task
control block and 1s 256 characters in length. However, the
XGLU routine 1limits the number of input characters to 78
plus two nulls.

If an [ESC] ($1B) 1s entered, the task exits to VMEPROM
unless a ’'BLT' instruction immediately follows the XGLU
call. If such 1is the case, then XGLU returns with status
set at 'LT’.

If the assigned console flag (ACIS(A6)) is set, then the ’'&’
character is wused for character substitutions. '50? is
replaced with the 1last system error number. 181 is
replaced with the first parameter of the command line, '&2°
with the second, and so forth up to ’&9°'.

The command line can be edited with various system defined

control characters. A [BACKSPACE] ($08) moves the cursor
one character to the left. A [CTRL-L] (S0C) moves the
cursor one character to the right. A [RUB] (S7F) deletes one
character to the left. A [CTRL-D] (S04) deletes the
character under the cursor. The cursor need not be at the

end of the line when the [CR] is entered.

Possible Errors: None

1.3.38 XGML - GET MEMORY LIMITS

Mnemonic: XGML

Value: $SA010

Module: MPDOSK1

Format: XGML

Registers: Out (AO0) = End TCB (TBES)
(Al) = Upper memory limit (EUMS-USZ)
(A2) = Last loaded address (BUMS)
(A5) = System RAM (SYRAM)
(A6) = Task TCB

Description:

Possible Errors:

The GET MEMORY LIMITS subroutine returns the
user task memory limits. These limits are
defined as the first usable 1location after
the task control block ($500 beyond address
register A6) and the end of the user task
memory. The task may use up to but not
including the upper memory limit.

Address register A0 is returned pointing to
the beginning of user storage (which is the

end of the TCB). Register Al points to the
upper task memory limit less $100
hexadecimal bytes for the user stack
pointer (USP). Register A2 1is the last

loaded memory address as provided by the
PDOS loader. Address registers A5 and A6
are returned with the pointers to system
RAM (SYRAM) and the task control block
(TCB).

None

1.3.39 XGMP - GET MESSAGE POINTER

Mnemonic:
Value:
Module:
Format:

XGMP

SA004

MPDOSK1

XGMP

<status return>

Registers: In DO.L

Message slot number (0..15)

Out DO.L = Source task # (-1 = no message)
SR = EQ....Message (Event[64+Message slot#]=0)
NE....No message
DO.L = Error number 83 if no message
(Al) = Message
Description: The GET MESSAGE POINTER primitive looks for
a task message pointer. If no message is
ready, then data register DO returns with a
minus one (-1) and status is set to ’'Not
Equal’.
If a message is waiting, then data register
DO returns with the source task number,
address register Al returns with the
message pointer, event (64 + message slot #)
is set to zero indicating message received,
and status is returned equal.
See also: -

1.3.40 XGTM - GET TASK MESSAGE

1.3.44 XKTM - KILL TASK MESSAGE

1.3.90 XSMP - SEND MESSAGE POINTER

1.3.93 XSTM - SEND TASK MESSAGE

Possible Errors:

83

= Message slot empty

1.3.40 XGNP - GET NEXT PARAMETER
Mnemonic: XGNP
Value: SAO5A
Module: Emulated by VMEPROM
Format: XGNP
<status return>
Registers: Out SR = LO....No parameter
[(A1)=0]
EQ....Null Parameter
[(Al)=0]
HI....Parameter
[(A1) =PARAMETER]
Description: The GET NEXT PARAMETER primitive parses the

Possible Errors:

VMEPROM command buffer for the next command
parameter. The XGNP primitive clears all
leading spaces of a parameter. A parameter
is a character string delimited by a space,
comma, period, or null. If a parameter

begins with a 1left parenthesis, then all
parzing stops until a matching right
parenthesis or null 1is found. Hence,
spaces, commas, and periods are passed in a
parameter when enclosed in parentheses.

Parentheses may be nested to any depth.

A 'LO' status 1is returned if the 1last
parameter delimiter 1is a null or period.
XGNP does not parse past a period. 1n this
case, address register Al is returned
pointing to a null string.

An 'EQ' status 1is returned if the last
parameter delimiter is a comma and no
parameter follows. Address register Al is
returned pointing to a null string.

A HI? status 1s returned if a wvalid
parameter 1is found. Address register Al

then points to the parameter.

None

1.3.41 XGTM - GET TASK MESSAGE
Mnemonic: XGTM
Value: SAO1E
Module: MPDOSK1
Format: XGTM
<status return>
Registers: In (Al) = Buffer address
Out DO.L = Source task #
(-1 = no message)
SR = EQ....message found
NE....no message
Description: The GET TASK MESSAGE primitive searches the
PDOS message buffers for a message with a
destination equal to the current task
number. If a message is found, it 1is moved
to the buffer pointed to by address
register Al. The message buffer is then
released, and the status 1s set EQUAL. If
no message is found, status is returned NE.
The buffer must be at 1least 64 bytes in
length. (This is a configuration
parameter.) The message buffers are
serviced on a first 1in, first out basis
(FIFO). Messages are data independent and
pass any type of binary data.
See also:
1.3.38 XGMP - GET MESSAGE POINTER
1.3.44 XKTM - KILL TASK MESSAGE
1.3.99 XSMP - SEND MESSAGE POINTER
1.3.93 XSTM - SEND TASK MESSAGE

Possible Errors:

None

1.3.42 XGUM - GET USER MEMORY

Mnemonic: XGUM
Value: SAO3E
Module: MPDOSK1
Format: XGUM

<status error return>

Registers: In DO.W = Number of K bytes

Out (A0) = Beginning memory address
(Al) = End memory address
Description: The GET USER MEMORY primitive searches the
system memory bit map for a contiguous block
of memory equal to DO.W Kbytes. If found,
the ’EQ' status is set, address registers A0
and Al are returned the start and end

memory address, and the memory block is
marked as allocated 1in the bit map.

See also: 1.3.29 XFUM - FREE USER MEMORY

Possible Errors:

73 = Not enough memory

1.3.43 XISE - INITIALIZE SECTOR

Mnemonic: XISE
Value: SAOQCO
Module: MPDOSF
Format: XISE

<status error return>

Registers: In

Description:

See also:

D0O.B = Disk number
D1.W = Logical sector number
(A2) = Buffer address

The INIT SECTOR primitive is a
system-defined, hardware—-dependent program
which writes 256 bytes of data from a
buffer (A2) to a logical sector number (D1l)
on disk (DO). This routine 1is meant to be
used only for disk initialization and is
equivalent to the WRITE SECTOR (XWSE)

primitive for all sectors except 0. Sector
0 is not checked for the PDOS ID code.

1.3.79 XRSE - READ SECTOR
1.3.82 XRSZ - READ SECTOR ZERO

1.3.112

Possible Errors:

XWSE - WRITE SECTOR

Disk errors

1.3.44 XKTB - KILL TASK

Mnemonic:
Value:
Module:
Format:

Registers:

In

XKTB

SAOFA

MPDOSK1

XKTB

<status error return>

DO.B = Task number

Note: If DO.B equals zero, then kill current task. If DO.B
negative, then kill task without allocating task
memory to system bit map.

is

Description:

See also:

Possible Errors:

74
76

The KILL TASK primitive removes a task from
the PDOS task 1list and optionally returns
the task’s memory to the system memory bit
map. Only the current task or a task
spawned by the current task can be killed.
Task 0 cannot be killed.

The Xkill process includes releasing the
input port assigned to the task and closing
all files associated with the task.

The task number 1is specified 1in data
register DO.B. If register DO.B equals
zero, then the current task is killed and
its memory deallocated in the system memory
bit map.

If DO.B is positive, then the selected task
is killed and its memory deallocated. If
DO.B is negative, then task number ABS(D0.B)
is killed, but its memory is not deallocated
in the memory bit map.

1.3.16 XCTB - CREATE TASK BLOCK

No such task
Task locked

1.3.45 XKTM - KILL TASK MESSAGE

Mnemonic: XKTM
Value: SA028
Module: MPDOSK1
Format: XKTM

<status return>

Registers: In DO.B = Task #
(A1) Buffer address
Qut DO.L = Source task #
(-1 = no message)

SR = EQ....message found
NE....no message
Description: The KILL TASK MESSAGE primitive allows you

to read (and thus clear) any task’s messages
from the system message buffers.

See also:
1.3.38 XGMP - GET MESSAGE POINTER
1.3.40 XGTM - GET TASK MESSAGE
1.3.90 XSMP - SEND MESSAGE POINTER
1.3.93 XSTM - SEND TASK MESSAGE

Possible Errors: None

1.3.46 XLDF

— LOAD FILE

Mnemonic:
Value:
Module:
Format:

Registers: In

0

XLDF
SAOBO
MPDOSF
XLDF

<status error return>

D1.B =

(A0)
(Al)
(A3)
ut (A0)
(A1)

Execution flag

Start of load memory
End of load memory
File name

= EADS - Lowest loaded address

BUMS - Last loaded address

Note: I1f D1.B=0,

then XLDF returns to your calling program.

If D1.B<>0, then the program is immediately executed.

Description:

Possible Errors:

The LOAD FILE primitive reads and loads
68000 object code into user memory. The
file name pointer 1is passed 1in address
register A3. Registers A0 and Al specify
the memory bounds for the relocatable 1load.
The file must be typed ’'OB’ or '8Y’. If
data register D1.B 1is =zero, then XLDF
returns to the calling program. Otherwise,
the loaded program is immediately executed.

The 68000 object should be
position-independent section 0 code without
any external references or definitions.

A 'SY* file is generated from an 'OB’ file
by the MSYFL wutility. The condensed object
is a direct memory image and must be
position-independent code.

The XLDF primitive uses long word moves and
may move up to three bytes more than
contained in an ’'SY’ file. As such, you
must allow for extra space for data moves to
an existing program.

63 = Illegal object tag
64 = Illegal section

65 = File not loadable

71 = Exceeds task size

73 = Not enough memory

Disk errors

1.3.47 XLER - LOAD ERROR REGISTER

Mnemonic: XLER
Value: SAO03A
Module: MPDOSK1
Format: XLER

Registers: In

Description:

Possible Errors:

DO.W = Error number

The LOAD ERROR REGISTER primitive stores
data register DO.W in the task control block
variable LENS$(A6). This variable will
replace the parameter substitution variable
'&0’ during a procedure file.

User programs should execute this call when
an error occurs.

The enable echo flag (ECF$(A6)) is cleared
by this call.

None

1.3.48

Mnemonic:

Value:
Module:
Format:

XLFN - LOOK FOR NAME IN FILE_ SLOTS

XLFN

SAOA2

MPDOSF

XLFN

<status return>

Registers: In

Note:

Out

If D3.W=0,

Description:

DO.B = Disk number

(Al) = Fixed file name
D3.W = File ID (Disk #/Index)
(A3) = Slot entry address

SR = NE...File name not found
EQ...File name found

then no slots are available.

The LOOK FOR NAME IN FILE SLOTS primitive
searches through the file slot table for the
file name as specified by registers D0.B and
Al. If the name is not found, register
D3.W returns with a -1 or O. The latter
indicates the file was not found and there
are no more slots available. Otherwise,
register D3.W returns the associated file ID
and register A3 returns the address of the
file slot.

A file slot is a 38-byte buffer where the
status of an open file is maintained. There
are 32 file slots available. The file ID
consists of the disk # and the file slot
index.

File slots assigned to read-only files are
skipped and not considered for file match.

None

1.3.49 XLKF - LOCK FILE

Mnemonic: XLKF
vValue: SA0DS8
Module: MPDOSF
Format: XLKF

<status error return>

Registers: In

Description:

D1.W = File ID

The LOCK FILE primitive locks an opened file
so that no other task can gain access until
an UNLOCK FILE (XULF) primitive is executed.
Only the locking task has access to the
locked file.

A locked file is indicated by a -1 (SFF) in
the left byte of the 1lock file parameter
(LF) of the file slot usage (FS) command.
The locking task number is stored in the
left byte of the task number parameter (TN).

See also: 1.3.103 XULF - UNLOCK FILE

Possible Errors:

52 = File not open
59 = Invalid slot #
75 = File 1locked
Disk errors

1.3.50 XLKT - LOCK TASK

Mnemonic: XLKT
Value: SA014
Module: MPDOSK1
Format: XLKT

<status return>

Registers: Out

Description:

SR = EQ...Not 1locked
NE. . .Locked

The LOCK TASK primitive locks the requesting
task in the run state by setting the swap
lock wvariable in system RAM to nonzero.
The task remains 1locked until an UNLOCK
TASK (XULT) is executed. The status of the
lock variable BEFORE the call is returned in
the status register.

XLKT waits until all 1locks (Level 2 and
Level 3 1locks) are cleared before the task
is locked.

See also: 1.3.104 XULT - UNLOCK TASK

Possible Errors:

None

1.3.51 XLSR - LOAD STATUS REGISTER

Mnemonic: XLSR
Value: SAQO2E
Module: MPDOSK1
Format: XLSR

Registers: In D1.W = 68000 status register

Description: The LOAD STATUS REGISTER primitive allows
you to directly 1load the 680C0 status
register. Of course, only appropriate bits
(i.e. the interrupt mask too high,
supervisor mode, trace mode, etc.) are to be
set so that the system is not crashed.

See also: 1.3.96 XSUP - ENTER SUPERVISOR MODE

Possible Errors: None

1.3.52 XNOP - OPEN SHARED RANDOM FILE

Mnemonic: XNOP
Value: SAODA
Module: MPDOSF
Format: XNOP
<status error return>
Registers: In (Al) = File name
Out DO.W = File attribute

D1.W

File ID

Notes: Uses multiple directory file search. You MUST lock
and position file before each multi-task access.

Description:

Possible Errors:

The OPEN SHARED RANDOM FILE primitive opens
a file for shared random access by assigning
the file to an area of system memory called
a file slot. The file ID and file attribute
are returned to the calling program in
registers D1 and DO, respectively.
Thereafter, the file 1is referenced by the
file ID and not by the file name. A new
entry in the file slot table is made only
if the file 1is not already opened for
shared access.

The file ID (returned 1in register D1) is a
2-byte number. The 1left byte 1is the disk
number and the right byte is the file slot
index. The file attributes are returned in
register DO.

The END-OF-FILE marker on a shared file is
changed only when the file has been
extended. All data transfers are buffered
through a channel buffer; data movement toO
and from the disk is by full sectors.

An "opened count" is incremented each time
the file is shared-opened and 1is
decremented by each close operation. The
file is only closed by PDOS when the count
is zero. This count is saved in the right
byte of the locked file parameter (LF) and
is listed by the file slot usage command
(FS).

50 = Invalid file name
53 = File not defined
60 = File space full
61 = File already open
68 = Not PDOS disk

69 = Not enough file slots
Disk errors

1.3.53 XPAD - PACK ASCII DATE

Mnemonic: XPAD
Value: SA00A
Module: MPDOSK3
Format: XPAD
Registers: 1In (A1) = '"DY-MON-YR’
Out Di.W = (Year*l6+month)*32+day
(YYYY YYYM MMMD DDDD)
(Al) = Updated
SR = .EQ. - Conversion ok
.NE. - Error
Description: The TACK ASCII DATE primitive converts an

ASCII date string to an encoded binary
number in data register D1. The result is
compatible with other PDOS date primitives
such as XUAD.

See Also:
1.3.28 XFTD - FIX TIME & DATE
1.3.71 XRDT - READ DATE
1.3.84 XRTM - READ TIME
1.3.101 XUAD - UNPACK ASCII DATE
1.3.102 XUDT - UNPACK DATE

Possible Errors: Status errors.

1.3.54 XPBC - PUT BUFFER TO CONSOLE

Mnemonic: XPBC

Value: SA084

Module: MPDOSK2

Format: XPBC

Registers: None

Description: The PUT USER BUFFER TO CONSOLE primitive

See also: 1.3.34

Possible Errors:

outputs the ASCII contents of the user
buffer to the user console and/or SPOOL
file. The output string is delimited by
the null character. The user buffer is the
first 256 bytes of the task control block
and is pointed to by address register A6.

With the exception of control characters
and characters with the parity bit on, each
character increments the column counter by

one. A [BACKSPACE] ($08) decrements the
counter while a [CR] ($0D) clears the
counter. [TAB]s ($09) are expanded with

blanks to MOD 8 character =zone fields.

If there are coinciding bits in the unit
(UNTS(A6)) and spool unit (SPUS(A6))
variables of the TCB, then the processed
characters are written to the spool unit
file slct (SPIS(A6)) and are not sent to
the corresponding output ports. If a disk
error occurs 1in the spool file, then all
subsequent output characters echo as a bell
until the error is corrected by selecting a
different UNIT or resetting the SPOOL UNIT.

XGLB - GET LINE IN BUFFER

None

1.3.55 XPCC - PUT CHARACTER(S) TO CONSOLE

Mnemonic: XPCC
Value: SA086
Module: MPDOSK?2
Format: XPCC

Registers: In

Description:

See also:

DO.W = Character(s)

The PUT CHARACTER TO CONSOLE primitive
outputs one or two ASCII characters in data
register DO to the user console and/or
SPOOL file. The right byte (bits 0 through
7) 1is first and is followed by the left
byte (bits 8 through 15) if non-zero. If
the right byte or both bytes are zero,
nothing is output to the console.

With the exception of control characters and

characters with the parity bit on, each
character increments the column counter by
one. A [BACKSPACE] ($08) decrements the
counter while a [CR] ($0D) clears the
counter. [TAB]s ($09) are expanded with

blanks to MOD 8 character zone fields.

If there are coinciding bits in the unit

(UNTS(A6)) and spool unit (SPUS(A6))
variables of the TCB, then the processed
characters are written to the spool unit
file slot (SPIS(A6)) and are not sent to
the corresponding output ports. If a disk
error occurs in the spool file, then all

subsequent output characters echo as a bell
until the error is corrected by selecting a
different UNIT or resetting the SPOOL UNIT.

1.3.56 XPCR - PUT CHARACTER RAW
1.3.57 XPDC - PUT DATA TO CONSOLE

Possible Errors:

None

1.3.56 ZXPCL - PUT CRLF TO CONSOLE

Mnemonic: XPCL

Value: SA088

Module: MPDOSK2

Format: XPCL

Registers: None

Description: The PUT CRLF TO CONSOLE primitive outputs

Possible Errors:

the ASCII characters carriage return <SOA>
and 1line feed <$0D> to the user console
and/or SPOOL file. The column counter is
cleared.

If there are coinciding bits in the unit
(UNTS(A6)) and spool unit (SPUS$(A6))
variables of the TCB, then the processed
characters are written to the spool unit
file slot (SPIS(A6)) and are not sent to
the corresponding output ports. If a disk
error occurs in the spool file, +hen ail
subsequent output characters echo as 23 bell
unti: the error is corrected by selecting a
different UNIT or resetting the SPOOL UNIT.

None

1.3.57 ZXPCP - PLACE CHARACTER IN PORT BUFFER

Mnemonic: XPCP
Value: SAOBC
Module: MPDOSK 2
Format: XPCP

Registers: In D0.B = Character to insert
D1.W = Input port number (1 to 15)

Out SR .EQ. = High water (character is
inserted)
.NE. = Character is inserted
Description: XPCP allows a character to be placed into
the input buffer of any VMEPROM port from a
task or program.
Note: Once the status returns EQ (high water) ,

subsequent XPCP calls will return a status
of NE as if everything were normal, but the
data is discarded. Once the status of EQ is
detected, the transmitting task should
monitor the status of the port with the XRPS
(read port status) call until bit 56 is
Cleared.

The port specified in the XPCP call is
independent of window g - it refers to the
physical port, not the logical port.

1.3.58 XPCR - PUT CHARACTER RAW

Mnemonic: XPCR
Value: SAOBA
Module: MPDOSK2
Format: XPCR

Registers: In DO0.B = CHARACTER

Description: The PUT CHARACTER RAW primitive outputs the
character in the lower byte of data register
DO to the user console. No attempt 1is made
by PDOS to interpret control characters.

See also:
1.3.54 XPCC - PUT CHARACTER(S) TO CONSOLE

1.3.57 XPDC - PUT DATA TO CONSOLE

Possible Errors: None

1.3.59 ZXPDC -~ PUT DATA TO CONSOLE

Mnemonic: XPDC

Value: SA096

Module: MPDOSK?2

Format: XPDC

Registers: In D7.W = LENGTH
(Al) = DATA STRING

Description: The PUT DATA TO CONSOLE primitive outputs
data-independent bytes to the console.
Address register Al points to the string
while data register D7 has the string
length.
If there are coinciding bits in the unit
(UNTS(A6)) and spool unit (SPUS(A6))
variables of the TCB, then the processed
Characters are written to the spool unit
file slot (SPIS$(A6)) and are not sent to
the corresponding output ports. If a disk
error occurs in the spool file, then all
subsequent output characters echo as a bell
until the error is corrected by selecting a
different UNIT or resetting the SPOOL UNIT.

See also:.

1.3.54 XPCC - PUT CHARACTER(S) TO CONSOLE
1.3.56 XPCR - PUT CHARACTER RAW

Possible Errors:

None

1.3.60 XPEL - PUT ENCODED LINE TQO CONSOLE

Mnemonic: XPEL
Value: SAO6E
Module: MPDOSK2
Format: XPEL

Registers: In

Description:

See also:

(Al) = Message

The PUT ENCODED LINE TO CONSOLE primitive
outputs to the user console the message
pointed to by address register Al. An
encoded message is similar to any other
string with the exception that the parity
bit is used to output blanks and the
character $80 outputs a carriage
return/line feed.

If the parity bit is set and the masked
character ($7F) 1is 1less than or equal to a
blank, then the numeric value of the
negated character is used as the number of
blanks to be inserted in the output stream.
If the mask character is greater than a
blank, then that character is output
followed by one blank.

With the exception of control characters,
each character increments the column
counter by one. A [BACKSPACE] ($08)
decrements the counter while a [CR] ($0D)
clears the counter. [TAB]s ($09) are
expanded with blanks to MOD 8 character
zone fields.

If there are coinciding bits in the unit
(UNTS$(A6)) and spool unit (SPUS$(A6))
variables of the TCB, then the processed
characters are written to the spool unit
file slot (SPI$(A6)) and are not sent to
the corresponding output ports. If a disk
error occurs in the spool file, then all
subsequent output characters echo as a bell
until the error is corrected by selecting a
different UNIT or resetting the SPOOL UNIT.

1.3.59 XPEM - PUT ENCODED MESSAGE TO CONSOLE
1.3.60 XPLC - PUT LINE TO CONSOLE
1.3.61 XPMC - PUT MESSAGE TO CONSOLE

Possible Errors:

None

1.3.61 XPEM - PUT ENCODED MESSAGE TO CONSOLE

Mnemonic: XPEM

Value: SA09C

Module: MPDOSK?2

Format: XPEM <message>

Registers:

Description:

See also:

None

The PUT ENCODED MESSAGE TO CONSOLE primitive
outputs to the wuser console the PC relative
message contained in the word following the
call. An encoded message is similar to any
other string with the exception that the
parity bit is wused to output blanks and the
character $80 outputs a carriage
return/line feed.

If the parity bit 1is set and the masked
character ($7F) 1is 1less than or equal to a
blank, then the numeric value of the
negated character is used as the number of
blanks to be inserted in the output stream.
If the mask character 1is greater than a
blank, then that character is output
followed by one blank.

With the exception of control characters,
each character increments the column
counter by one. A [BACKSPACE] (S$08)
decrements the counter while a [CR] ($S0D)
clears the counter. [TAB]s ($09) are
expanded with blanks to MOD 8 character
zone fields.

If there are coinciding bits in the unit
(UNTS(A6)) and spool unit (SPUS(A6))
variables of the TCB, then the processed
characters are written to the spool unit
file siot (SPIS$(A6)) and are not sent to
the corresponding output ports. If a disk
error occurs in the spool file, then ail
subsequent output characters echo as a bell
until the error is corrected by selecting a
different UNIT or resetting the SPOOL UNIT.

1.3.58 XPEL - PUT ENCODED LINE TO CONSOLE
1.3.60 XPLC - PUT LINE TO CONSOLE
1.3.61 XPMC - PUT MESSAGE TO CONSOLE

Possible Errors:

None

1.3.62 XPLC - PUT LINE TO CONSOLE

Mnemonic: XPLC
Value: SAO08A
Module: MPDOSK2
Format: XPLC

Registers: In

Description:

Sce also:

(A1) = ASCII string

The PUT LINE TO CONSOLE primitive outputs
the ASCII character string pointed to by
address register Al to the user console
and/or SPOOL file. The string is delimited
by the null character.

With the exception of control characters and
characters with the parity bit on, each
character increments the column counter by
one. A [BACKSPACE] ($08) decrements the
counter while a [CR] ($0D) clears the
counter. [TAB]s ($09) are expanded with
blanks to MOD 8 character zone fields.

If there are coinciding bits in the unit
(UNT$(A6)) and spool unit (SPUS$(A6))
variables of the TCB, then the processed
characters are written to the spool unit
file slot (SPIS(A6)) and are not sent to
the corresponding output ports. If a disk
error occurs in the spool file, then all
subsequent output characters echo as a bell
until the error is corrected by selecting a
different UNIT or resetting the SPOOL UNIT.

1.3.58 XFEL - PUT ENCODED LINE TO CONSOLE
1.3.53 XPEM - PUT ENCODED MESSAGE TO CONSOLE
1.3.61 XPMC - PUT MESSAGE TO CONSOLE

Pcssible Errors:

None

Mnemonic: XPMC

Value: $A08C

Module: MPDOSK2

Format: XPMC <message>

Registers: None

Description: The PUT MESSAGE TO CONSOLE primitive outputs

See also:

the ASCII character string pointed to by
the message address word immediately
following the PDOS call to the user console
and/or SPOOL file. The address is a PC
relative 16-bit displacement to the
message. The output string is delimited by
the null character.

With the exception of control characters and

characters with the parity bit on, each
character increments the column counter by
one. A [BACKSPACE] ($08) decrements the
counter while a [CR] ($0D) clears the
counter. [TAB]s ($09) are expanded with

blanks to MOD 8 character zone fields.

If there are coinciding bits in the unit

(UNTS(A6)) and spool unit (SPUS$(A6))
variables of the TCB, then the processed
characters are written to the spool unit
file slot (SPIS$(A6)) and are not sent to
the corresponding output ports. If a disk
error occurs 1in the spool file, then all

subsequent output characters echo as a bell
until the error is corrected by selecting a
different UNIT or resetting the SPOOL UNIT.

1.3.58 XPEL - PUT ENCODED LINE TO CONSOLE
1.3.59 XPEM - PUT ENCODED MESSAGE TO CONSOLE
1.3.60 XPLC - PUT LINE TO CONSOLE

Possible Errors:

None

1.3.64 XPSC - POSITION CURSOR

Mnemonic: XPSC

Value: SAOSE

Module: MPDOSK?2

Format: XPSC

Registers: In D1.B = Row
D2.B = Column

Note: Uses PSCS$(

Description:

See also:

A6) as lead characters.

The POSITION CURSOR primitive positions the
cursor on the console terminal according to
the row and column values in data registers
Dl and D2. Register D1 specifies the row on
the terminal and generally ranges from 0 to
23, with 0 being the top row. Register D2
specifies the column of the terminal and
ranges from 0 to 79, with 0 being the
left-hand column. Register D2 is also
loaded into the column counter reflecting
the true column of the cursor.

The XPSC primitive outputs either one or two
leading characters followed by the row and
column. The leading characters output by
XPSC are 1located in PSC$(A6) of the task

control Dblock. These characters are
transferred from the parent task to the
spawned task during creation. The initial

characters come from the BIOS module.

The rocw and column characters are biased by
$20 if the parity bit of the first

character is set. Likewise, if the second
character’s parity bit is set, then
row/column order is reversed. This

accommodates most terminal requirements for
positioning the cursor.

If PSC$ is zero, then PDOS makes a call into
the BIOS for custom position cursor. The
entry point is B PSC beyond the BIOS table.

The ST command of the user interface can be
used to change the position cursor codes.

1.3.14 XCLS - CLEAR SCREEN
1.3.67 XRCP - READ PORT CURSOR POSITION

Possible Errors:

None

1.3.65 XPSF - POSITION FILE

Mnemonic: XPSF
Value: SAODC
Module: MPDOSF
Format: XPSF

<status error return>

File ID
Byte position

Registers: In D1.W
D2.L

Note: A byte position equal to -1 positions to the end of
the file.

Description: The POSITION FILE primitive moves the file
byte pointer to any byte position within a
file. The file ID is given in register D1
and the long word byte position is
specified in register D2.

An error occurs 1if the byte position is
greater than the current end-of-file
marker.

A contiguous file greatly enhances the
speed of the position primitive since the
desired sector is directly computed.
However, the position primitive does work
with non-contiguous files, as PDOS follows
the sector links to the desired byte
position.

A contiguous file is extended by
positioning to the end-of-file marker and
writing data. However, PDOS will alter the
file type to non-contiguous if a contiguous
sector is not available. This would result
in random access being much slower.

See also:
1.3.73 XRFP - READ FILE POSITION
1.3.87 XRWF - REWIND FILE

Possible Errors:

52 = File not open
59 = Invalid slot #
70 = Position error
Disk errors

1.3.66 XPSP - PUT SPACE TO CONSOLE

Mnemonic: XPSP
Value: SA098
Module: MPDOSK2
Format: XPSP
Registers: None

Description:

The PUT SPACE TO CONSOLE outputs a [SP]
($20) character to the user console. There
are no registers or status involved. If
there are coinciding bits in the unit
(UNTS (A6)) and spool unit (SPUS(A6))
variables of the TCB, then the processed
characters are written to the spool unit
file slot (SPI$(A6)) and are not sent to the
corresponding output ports. If a disk error
occurs 1in the spool file, then all
subsequent output characters echo as a bell
until the error is corrected by selecting a
different UNIT or resetting the SPOOL UNIT.

See also: 1.3.54 XPCC - PUT CHARACTER(S) TO CONSOLE

Possible Errors:

None

1.3.67 XRBF - READ BYTES FROM FILE

Mnemonic: XRBF

Value: SAODE

Module: MPDOSF

Format: XRBF

<status error return>
Registers: In DO.L = Number of bytes
D1.W = File ID
(A2) = R/W buffer address
Out D3.L = Number of bytes read
(On EOF only.)

Description: The READ BYTES FROM FILE primitive reads the
number of bytes specified 1in register DO
from the file specified by the file ID in
register D1 into a memory buffer pointed to
by address register A2. If the channel
buffer has been rolled to disk, the
least-used buffer is freed and the desired
buffer is restored to memory. The file slot
ID is placed on the top of the last-access
queue.

If an error occurs during the read
operation, the error return is taken with
the error number in register DO and the
number of bytes actually read in register
D3.

The read is independent of the data content.
The buffer pointer in register A2 is on any
byte boundary. The buffer is not
terminated with a null.

A byte count of zero in register D0 results
in one byte being read from the file. This
facilitates single byte data acquisition.

See also:

1.3.74 XRLF - READ LINE FROM FILE
1.3.107 XWBF — WRITE BYTES TO FILE
1.3.111 XWLF - WRITE LINE TO FILE

Possible Errors:

52

= File not open
56 = End of file
= Invalid slot #

Disk errors

1.3.68 XRCN - RESET CONSOLE INPUTS

Mnemonic: XRCN

Value: SA0B2

Module: MPDOSF

Format: XRCN

Registers: None

Description: The RESET CONSOLE INPUTS closes the current
procedure file. If there are other
procedure files pending (nested), then they

become active again.
See also: 1.3.4 XCBC - CHECK FOR BREAK CHARACTER

Possible Errors: None

1.3.69 XRCP - READ PORT CURSOR POSITION

Mnemonic: XRCP
Value: SA092
Module: MPDOSK2
Format: XRCP
Registers: In DO.W = Port #
Out Dl1.L = Row
D2.L = Column

Note: If DO.W=0,

Description:

See also:

then the current port (PRTS$(A6)) is used.

The READ PORT CURSOR POSITION primitive
reads the current cursor position for the
port designated by data register DO.B. The
PDOS system maintains a column count (0-79)
and a row count (0-23) for each port. When
the cursor reaches row 23, the count is not
incremented, acting like a screen scroll.

1.3.14 XCLS — CLEAR SCREEN
1.3.62 XPSC - POSITION CURSOR

Possible Errors:

None

1.3.70 XRDE - READ NEXT DIRECTORY ENTRY

Mnemonic: XRDE
Value: SAOA6
Module: MPDOSF
Format: XRDE
<status error return>
Registers: In DO.B = Disk number
D1.B = Read flag (0=1st)
(A2) = Last 32 byte directory entry
TW1S$ = Sector number
TW2$ = number of directory entries
Out Dl1.W = Sector number
(A2) = Next entry
Description: The READ NEXT DIRECTORY ENTRY primitive

Possible Errors:

53
68

reads sequentially through a disk
directory. 1If register D1.B is zero, then
the routine begins with the first directory
entry. If register D1.B is nonzero, then
based on the last directory entry (pointed
to by register A2), the next entry is read.

The calling routine must maintain registers
D0O.B and A2, the user I/0 buffer, and
temporary variables TW1l$ and TW2$ of the
task control block between calls to XRDE.

File not defined (End of directory)
Not FDOS disk

Disk errors

1.3.71 XRDM - DUMP REGISTERS

Mnemonic: XRDM
Value: SA02A
Module: MPDOSK1
Format: XRDM

Registers: In

Description:

All

The DUMP REGISTERS primitive formats and
outputs all the current register wvalues of
the 68000 to the user console along with
the program counter, status register, and
the supervisor stack.

The registers and status are not affected by
this primitive.

See also: 1.3.20 XDMP - DUMP MEMORY FROM STACK

Possible Errors:

None

1.3.72 XRDN - READ DIRECTORY ENTRY BY NAME

Mnemonic: XRDN
Value: SAOAS
Module: MPDOSF
Format: XRDN
<status error return>
Registers: In D0.B = Disk number
MWBS = File name
Out Dl1.W = Sector number in memory
(A2) = Directory entry
TW2$ = Entry count
Description: The READ DIRECTORY ENTRY BY NAME primitive
reads directory entries by file name.
Register D0.B specifies the disk number.
The file name is located in the Monitor Work
Buffer (MwWBS$) 1in a fixed format. Several
other parameters are returned in the monitor
TEMP storage of the user task control block.
These variables assist in the housekeeping
operations on the disk directory.
See also: 1.3.27 XFFN - FIX FILE NAME

Possible Errors:

53
68

File not defined
Not PDOS disk

Disk errors

1.3.73 XRDT - READ DATE

Mnemonic: XRDT
Value: SA05C
Module: MPDOSK 3
Format: XRDT

Registers: Out (Al) = 'MN/DY/YR’<null>

Description: The READ DATE primitive returns the current
system date as a nine character string. The
format is 'MN/DY/YR' followed by a null.
Address register Al points to the string in
the monitor work buffer.

See also:

1.3.28 XFTD - FIX TIME & DATE
1.3.52 XPAD - PACK ASCII DATE
1.3.84 XRTM - READ TIME

1.3.101 XUAD - UNPACK ASCII DATE
1.3.102 XUDT - UNPACK DATE
1.3.106 XUTM - UNPACK TIME

Possible Errors: None

1.3.74 XRFA - READ FILE ATTRIBUTES

Mnemonic: XRFA
Value: SAOEQ
Module: MPDOSF
Format: XRFA

<status error return>

Registers: In
Out

(A1) = File name

(A2) = Directory entry
DO.L = Disk number

D1.L = File size (in bytes)
D2.1. = Level/attributes

Note: Uses multiple directory file search.

Description:

See also:

The READ FILE ATTRIBUTES primitive returns
the disk number of where the file was found
in data register DO.L. Data register D1.L
is returned with the size of the file in
bytes. The file directory level is returned
in the upper word of register D2.L and the
file attributes are returned in register
D2.W. The file name 1is pointed to by
address register Al. File attributes are
defined as follows:

$80xx AC - Procedure file

$40xx BN - Binary file

$20xx OB - 68000 object file

$10xx SY - 68000 memory image
$08xx BX - BASIC binary token file
$04xx EX - BASIC ASCII file

$02xx TX - Text file

$01xx DR - System I/0 driver

$Sxx04 C - Czontigucus file
Sxx02 * - Delete protect
Sxx0x *%« — Dplete and write protect

1.3.11 XCFA - CLOSE TILE W/ATIRIBUTE
1.3.109 XWFA - WRITE TILE ATTRIBUTES
1.3.110 XWEP — WRITE FiIlE PARAMETERS

Possible Errors:

53

T

50 = Invalid file name
= File not defined

60 = File space full
Disk errors

[

-82

1.3.75 XRFP - READ FILE POSITION

Mnemonic: XRFP
Value: SAQOFE
Module: MPDOSF
Format: XRFP
<status error return>
Registers: In D1.W = File ID
Out (A3) = File slot address
D2.L = Byte position
D3.L = EOF byte position
Description: The READ FILE POSITION primitive returns the
current file position, end-of-file position,
and file slot address. The open file is
selected by the file 1ID in data register
D1.W.
Address register A3 is returned pointing to
the open file slot. Data registers D2.L
and D3.L are returned with the current file
byte position and the end-of-file position
respectively.
See also:

1.3.63 XPSF - POSITION FILE
1.3.87 XRWF - REWIND FILE

Possible Errors:

52
59

File not open
Invalid slot #

Disk errors

1.3.76 XRLF -

AD LINE FROM FILE

Mnemonic: XRLF

Value: SAOE2

Module: MPDOSF

Format: XRLF

<status error return>

Registers: In D1.W = File ID
(A2) = R/W buffer address

out D3.L = # of bytes read
(On EOF only.)

Description: The READ LINE primitive reads one line,

delimited by a carriage return [CR], from
the file specified by the file ID in
register D1. If a [CR] is not encountered
after 132 characters, then the line and
primitive are terminated. Address register
A2 points to the buffer in user memory
where the 1line is to be stored. If the
channel buffer has been rolled to disk, the
least-used buffer is freed and the buffer is
restored to memory. The file slot 1ID is
placed on the top of the last-access queue.
If an error occurs during the read
operation, the error return is taken with
the error number in register DO and the
number of bytes actually read in register
D3.
The line read is dependent upon the data
content. All line feeds ([LF]) are dropped
from the data stream and the [CR] is
replaced with a null. The buffer pointer
in register A2 may be on any byte boundary.
The buffer is not terminated with a null on
an error return.

See also:

1.3.65 XRBF — READ BYTES FROM FILE
1.3.107 XWBF — WRITE BYTES TO FILE
1.3.111 XWLF - WRITE LINE TO FILE

Possible Errors:

52

= File not open
56 = End of file
= Invalid slot #

Disk errors

1.3.77 XRNF - RENAME FILE
XRNF

Mnemonic:
Value:
Module:
Format:

Registers:

SAOE4

MPDOSF
XRNF

In

Description:

See also:

<status error return>

014 file name
New file name

(A1)
(A2)

The RENAME FILE primitive renames a file in
a PDOS disk directory. The old file name is
pointed to by address register Al. The new
file name is pointed to by address register
A2.

The XRNF primitive is used to change the
directory level for any file by letting the
new file name be a numeric string equivalent
to the new directory 1level. XRNF first
attempts a conversion on the second
parameter before renaming the file. If the
string converts to a number without error,
then only the level of the file is changed.

1.3.18 XDFL - DEFINE FILE
1.3.19 XDLF - DELETE FILE

Possible Errors:

50
51

Invalid file name
File already defined

Disk errors

1.3.78 XROO - OPEN RANDOM READ ONLY FILE

Mnemonic:
Value:
Module:
Format:

Registers:

XROO
SAOE
MPDO
XROO

6
SF

<status error return>

In (Al) = File name
Out DO.W = File attribute
D1.W = File ID

Note: Uses multiple directory file search.

Description

Possible Errors:

50
53
6l
68

Dis

k

The OPEN RANDOM READ ONLY FILE primitive
opens a file for random access by assigning
the file to an area of system memory called
a file slot, and returning a file 1ID and
file attribute to the calling program.
Thereafter, the file 1is referenced by the
file ID and not by the file name. This type
of file open provides read only access.

The file ID (returned in register R1l) is a
2-byte number. The left byte is the disk
number and the right byte is the channel
buffer index. The file attribute is
returned in register DO.

Since the file cannot be altered, it cannot
be extended nor is the LAST UPDATE parameter
changed when it is closed. All data
transfers are buffered through a channel
buffer and data movement to and from the
disk is by full sectors.

A new file slot is allocated for each XROO
call even if the file is already open. The
file slot is allocated beginning with slot 1
to 32.

Invalid file name
File not defined
File already open

Not
Not

PDOS disk
enough file slots

errors

1-86

1.3.79 XROP - OPEN RANDOM

Mnemonic: XROP
Value: SAOES
Module: MPDOSF
Format: XROP

<status error return>

Registers: In (A1) = File name
Out DO.W = File attribute
D1.W = File ID

Note: Uses multiple directory file search.

Description:

Possible Errors:

50
53
61
68
69

o
'
0
~

The OPEN RANDOM FILE primitive opens a file
for random access by assigning the file to
an area of system memory called a file slot,
and returning a file 1ID and file attribute
to the calling program. Thereafter, the
file is referenced by the file ID and not by
the file name.

The file ID (returned in register D1l) is a
2-byte number. The 1left byte is the disk
number and the right byte 1is the channel
buffer index. The file attribute is
returned in register DO.

The END-OF-FILE marker on a random file is
changed only when the file has been
extended. All data transfers are buffered
through a channel buffer and data movement
to and from the disk is by full sectors.

The file slot is allocated beginning with
slot 32 to slot 1. If the file is already
open, then the file slot is shared.

Invalid tile name
File not defined
File already open
Not PDOS disk

Not enough file slots
errors

1.3.80 XRPS - READ PORT STATUS

Mnemonic: XRPS
Value: SA094
Module: MPDOSK2
Format: XRPS

<status error return>

Port number
ACIS.W / portflag.B / Status.B

Registers: In DO.W
Out Dl1.L

Note: If D0.W=0, then the current port (PRT$(A6)) is used.

Description: The READ PORT STATUS primitive reads the
current status of the port specified by data
register DO.W. The high order word of data
register Dl1.L is returned zero 1if no
procedure file is open. Otherwise, it is
returned with ACIS.

The low order word is returned with the port
flag bits and the status as returned for the
port UART routine. The flag bits indicate
if eight bit I/O is occurring, if DTR or *S
"Q protocol is in effect, and other flags.

See also:
1.3.3 XBCP - BAUD CONSOLE PORT
1.3.92 XSPF - SET PORT FLAG

Possible Errors:

66 = Invalid port or baud rate

1.3.81 XRSE - READ SECTOR

Mnemonic: XRSE
Value: SA0C2
Module: MPDOSF
Format: XRSE

<status error return>

Registers: In DO.B Disk number

D1.W = Sector number
(A2) = Buffer pointer
Description: The READ SECTOR primitive

system—-defined, hardware—-dependent program
which reads 256 bytes of data into a memory
buffer pointed to by address
The disk 1is selected by data register DO.

Register D1 specifies the
number to be read.

See also:
1.3.42 XISE - INITIALIZE SECTOR
1.3.82 XRSZ - READ SECTOR ZERO
1.3.112 XWSE - WRITE SECTOR
Possible Errors:

Disk errors

register A2.

logical sector

1.3.82 XRSR - READ STATUS REGISTER

Mnemonic: XRSR
Value: SA042
Module: MPDOSK1
Format: XRSR

Registers: Out DO.W = 68000 status register

Description:

Possible Errors:

The READ STATUS REGISTER primitive allows
you to read the 68000 status register. Of
course, this 1is equivalent to the ’'MOVE.W
SR,Dx’ instruction on the 68000. However,
this instruction 1is privileged on the 68010
and 68020. Hence, it is advisable to use
the XRSR primitive to read the status
register to make software upward compatible.

None

1.3.83 XRST - RESET DISK

Mnemonic: XRST

Value: SAOB4

Module: MPDOSF

Format: XRST

Registers: In D1.W = -1.... Reset by task

>=0... Reset by disk

Description: The RESET DISK primitive closes all open
files either by task or disk number. The
primitive also clears the assigned input

file ID. If register D1 equals -1, then all
files associated with the current task are
closed. Otherwise, register D1 specifies a
disk and all files opened on that disk are
closed.

XRST has no error return and as such,
closes all files even though errors occur in
the close process. This 1is necessary to
allow for recovery from previous errors.

See also:
1.3.11 XCFA - CLOSE FILE W/ATTRIBUTE

1.3.13 XCLF - CLOSE FILE

Possible Errors: None

1.3.84 XRSZ - READ SECTOR ZERQ

Mnemonic: XRSZ
Value: SA0C4
Module: MPDOSF
Format: XRS7Z

<status error return>
Registers: In DO0.B = Disk number

Out D1.L =0
(A2) = User buffer pointer (A6)

Description: The READ SECTOR ZERO primitive 1is a

See also:

system-defined, hardware-dependent program
which reads 256 bytes of data into the user
memory buffer (usually pointed to by address
register A6). The disk is selected by data
register DO.W. Register D1.L 1is cleared
and logical sector zero is read.

1.3.42 XISE - INITIALIZE SECTOR
1.3.79 XRSE - READ SECTOR
1.3.112 XWSE - WRITE SECTOR

Possible Errors:

Disk errors

1-92

1.3.85 XRTE - RETURN FROM INTERRUPT

Mnemonic: XRTE
Value: SA044
Module: MPDOSK1
Format: XRTE

Registers: In

Description:

Possible Errors:

SSP = Status register.w
Program counter.L

The RETURN FROM INTERRUPT primitive is used
to return from an interrupt process routine
with a context switch. This allows an
immediate rescheduling of the highest
priority ready task which may be suspended
pending the occurrence of an event set by
the interrupt routine.

If the interrupted system is locked when the
XRTE primitive is executed, then the
reschedule flag (RFLG.(A5)) is cleared and
a return from exception instruction (RTE)
is executed. When the system clears the
task lock, RFIG. is tested and set (TAS)
and a rescheduling occurs at that time.

None

1.3.86 XRTM - READ TIME

Mnemonic: XRTM

Value: SAOSE

Module: MPDOSK3

Format: XRTM

Registers: Out (Al) = ?HR:MN:SC’<null>

10(Al).W = Tics/second (B.TPS)
12(Al).L = Tics (TICS.)

Description: The READ TIME primitive returns the current
time as a nine-character string. The format
is 'HR:MN:SC’ followed by a null. Address
register Al points to the string in the
monitor work buffer.

See also:

Possible Errors:

1.3.28 XFTD - FIX TIME & DATE
1.3.52 XPAD - PACK ASCII DATE
1.3.71 XRDT - READ DATE

1.3.101 XUAD - UNPACK ASCII DATE
1.3.102 XUDT - UNPACK DATE
1.3.106 XUTM - UNPACK TIME

None

1-94

1.3.87 ZXRTP - READ TIME PARAMETERS

Mnemonic: XRTP
Value: $SA034
Module: MPDOSK1
Format: XRTP
Registers: Out DO.L = TICS.
D1.L = MONTH/DAY/YEAR/O
D2.L = HOURS/MINUTES/SECONDS/0
D3.L = B.TPS
Description: The READ TIME PARAMETERS primitive returns
the current time parameters. Data register
D0 returns with the current tic count
(TICS.(A5)). Register Dl.I. returns with
the current date and register D2.L the
current time. Both are three bytes that
are left-justified. Finally, data register
D3.L returns with the number of clock tics
per second.
See also:

1.3.28 XFTD - FIX TIME & DATE
1.3.52 XPAD - PACK ASCII DATE
1.3.71 XRDT - READ DATE
1.3.84 XRTM - READ TIME

1.3.101
1.3.102
1.3.101

Possible Errors:

XUAD - UNPACK ASCII DATE
XUDT - UNPACK DATE
XUTM - UNPACK TIME

None

1.3.88 XRTS - READ TASK STATUS

Mnemonic: XRTS
Value: SAO01
Module: MPDO
Format: XRTS

<sta

Registers: In D

2
SK1

tus return>

oO.W Task number

Out Dl1.L = 0 - Not executing
= +N - Time slice
= -N - (Event #l/Event #2)
A0.L = TLST entry (IF -DO: AO=TLST.)

Note: If DO.W=-1
returned in D1.L.

Description:

See also: 1.3.94

Possible Errors:

SR Status of Dl1.L

, then the current task number is

The READ TASK STATUS primitive returns in
register D1 and the status register returns
the time parameter of the task specified by

register DO. The time reflects the
execution mode of the task. If D1l returns
zero, then the task 1is not in the task

list. If D1 returns a value greater than
zero, then the task 1is in the run state
(executing). If D1 returns a negative
value, then the task is suspended pending
event —-(D1l).

The task number is returned from the CREATE
TASK BLOCK (XCTB) primitive. It can also
be obtained by setting data register DO
equal to a minus one. In this case,
register D1.L is returned with the current
task number.

XSTP - SET/READ TASK PRIORITY

None

1.3.89 XRWF - REWIND FILE

Mnemonic: XRWF
Value: SAOEA
Module: MPDOSF
Format: XRWF

<status error return>

Registers: In D1.W = File ID

Description: The REWIND FILE primitive positions the file
specified by the file ID in register D1, to
byte position zero.

See also:
1.3.63 XPSF - POSITION FILE
1.3.73 XRFP - READ FILE POSITION

Possible Errors:

= File not open
59 = Invalid slot #

= Position error
Disk errors

1.3.90 XSEF - SET E T FLA
Mnemonic: XSEF
Value: SA018
Module: MPDOSK1
Format: XSEF

<status return>
Registers: In D1.B = Event (+=Set, —=Reset)

Out SR = NE....Set
EQ....Reset

Note: An XSWP 1is automatically executed after the event is

set or reset.

If D1.B is positive, then the event is

If Di.B is negative,

Event 128 is local to each task.

set.

then the event is reset.

Description: The SET EVENT FLAG WITH SWAP primitive sets
or resets an event flag bit. The event
number is specified 1in data register D1.B
and 1is module 128. If the content of
register D1.B is positive, then the event
bit 1is set to 1. Otherwise, the bit is
reset tc 0. Event 128 can only be set.

Events are summarized as

S

(It is cieared by the task scheduler.)

The status cf the event bit prior to
changing <+he event is returned in the
status recister. If the event was 0, then
the 'EQ’ s:tatus is returned. Also, an
immediate context switch occurs thus
scheduiing any higher priority task pendinc
cn that event.

focllows:

1-63 = Software events
64—-80 = Software resetting events
81-95 = Output port events
26—1il1l = Input »Cri events
il2 = 175 seccnd event
113 = 1 second event
1i4 = 10 second event
115 = 20 seccndéd event
1i6 = TT2 acti-re
117 = LPT active
ee also:
1.3.17 XDEV - DELAY SET/RESET EVENT
1,3.89 XSEV - SET EVENT FLAG
1.3.95 XSUI - SUSPEID UIITIL INTERRUPT
1.3.100 XTEF - TEST EVENT TLAG
cssibie Errors: HNons

-¢8

-

1.3.91 XSEV_ - SET EVENT FLAG

Mnemonic: XSEV
Value: SA046
Module: MPDOSK1
Format: XSEV

<status return>

Registers: In
out

D1.B

Event (+=Set, —-=Reset)
NE....Set
EQ....Reset

SR

Note: Event 128 is local to each task.

If D1.B is positive, then the event is set.
If D1.B is negative, then the event is reset.

Description:

The SET EVENT FLAG primitive sets or resets
an event flag bit. The event number is
specified in data register Dl1.B and is
module 128. If the content of register D1.B
is positive, then the event bit is set to
1. Otherwise, the bit is reset to 0. Event
128 can only be set. (It is cleared by the
task scheduler.)

The status of the event bit prior to

changing the event 1is returned in the
status register. If the event was 0, then
the 'EQ' status is returned. A context

switch DOES NOT occur with this call making
it useful for interrupt routines outside the
PDOS system.

Events are summarized as follows:

1-63
64-80
81-95

96-111
112
113
114
115
116
117

See also:

1.3.17 XDEV
1.3.89 XSEV
1.3.95 XSUI
1.3.100 XTEF

Software events

Software resetting events
Output port events

Input port events

1/5 second event

1 second event

10 second event

20 second event

TTA active

LPT active

DELAY SET/RESET EVENT
SET EVENT FLAG

SUSPEND UNTIL INTERRUPT
TEST EVENT FLAG

Possible Errors: None

1.3.92 XSMP - SEND MESSAGE FOINTER

Mnemonic: XSMP
Value: SA002
Module: MPDOSK1
Format: XSMP

<status return>

Registers: In DO0.B Message slot number (0..15)

(Al) = Message
Out SR = EQ....Message sent (Event[64+slot #]=1)
NE....No message sent
Description: The SEND MESSAGE POINTER primitive sends a
32-bit message to the message slot

specified by data register DO0.B. Address
register Al contains the message. If there
is still a message pending, then the

primitive immediately returns with status
set 'Not Equal’ and DO.L equal to 83.
Otherwise, the message 1is taken by PDGS

event (64 + message slot number) is set to
one indicating a message is ready, and
status is returned ’Equal’.

The primitive XSMP is only valid for message
slots 0 through 15. (This is because of
current event limitations.)

See also:
1.3.38 XGMP

GET MESSAGE POINTER
1.3.40 XGTM GET TASK MESSAGE
1.3.44 XKTM KILL TASK MESSAGE
1.3.93 XSTM — SEND TASK MESSAGE

Possible Errors:

83 = Message buffer pencding

1.3.93 XSQE — SUSPEND ON PHYSICAL EVENT

Mnemonic: XSOE
Value: SAl12
Module: MPDOSK1
Format: XSOE

Registers: In D1.L Event 1 Descriptor.w, Event 0 Descriptor.w

AQ = Event 0 address (0=no event 0 to suspend on)
Al = Event 1 address (0=no event 1 to suspend on)
Out DO = -1 if awaken on event 0;1 if awaken on event 1

Note: This call is the same as XSUI but with physical events.

Description: XSOE allows a task to suspend on one or two
events within the system. Tasks that suspend
on physical events are listed as suspended on
events -1/1. If event 0 is the scheduling
event, a -1 is returned; otherwise, a 1 is
returned.

The event descriptor is a 16 bit word that
defines both the bit number at the specified
A0 ,Al address and the action to take o n the
bit. The following bits are defined:

Bit number -- 15 14 13 12 11 10 98 76 5 43210
T X X X X XXXSXXXXBBB
T = Should the bit be toggled on scheduling?
1 = Yes (toggle), 0 = No (do not toggle)

S = Suspend on event bit clear or set
1l = Suspend on SET, 0 = Suspend on CLEAR

BBB = The 680 x 0 bit number to use as an event
X = Reserved, should be 0

Since the bit number is specified in the lower three bits of
the descriptor, you may use the descriptor with the 680x0
BTST ,BCLR,BSET instructions.

See also: XDPE - Delay On Physical Event
XTLP - Translate Logical To Physical Event

1-101

1.3.94 XSOP - QOPEN SEQUENTIAL FILE

Mnemonic: XsSop

Value: SAQOEC

Module: MPDOSF

Format: Xsop

<status error return>
Registers: In (Al) = File name
Out DO.W = File attribute
D1.W = File ID

Note: Uses multiple directory file search.

Description:

Possible Errors:

50
53
€l
68

The OPEN SEQUENTIAL FILE primitive opens a
file for sequential access by assigning the
file to an area of system memory called a
file slot and returning a file ID and file
type to the calling program. Thereafter,
the file is referenced by the file 1ID and
not by the file name.

The file ID (returned in register Dl) is a
2-byte number. The 1left byte 1is the disk
number and the right byte is the file slot
index. The file attribute is returned in
DO.

The END-OF-FILE marker on a sequential file
is changed whenever data is written to the
fiie. All data transfers are buffered
through a channel buffer; data movement to
and from the disk is by full sectors.

The file slcots are allocated beginning with
slot 32 down to slot 1.

Invalid file name
Tile not defined

File alreadv open
Not P3OS disk

Not enough file slcts

Disk errcrs

1-102

1.3.95 XSPF - SET PORT FLAG

Mnemonic: XSPF
Value: SAQ09A
Module: MPDOSK2
Format: XSPF

<status error return>

Port number
Port flag (fwpi8dcs)
014 port flag

Registers: In DO.W
D1.B
Out D1.B

Note: If DO0.W=0, then the current port (PRT$(A6)) is used.

Description: The SET PORT FLAG primitive stores the port
flag passed in data register D1.B in the
port flag register as specified by register
DO.W. If flag bits 'p?, 'i?’, or '8’ change,
the BIOS baud port routine is called.

See also:
1.
1l

3.3 XBCP - BAUD CONSOLE PORT
3.78 XRPS - READ PORT STATUS

Possible Errors:

66 = Invalid port or baud rate

1-103

1.3.96 XSTM - SEND TASK MESSAGE

Mnemonic: XSTM

Value: $A020

Module: MPDOSK1

Format: XSTM

<status error return>

Registers: In D0.B = TASK NUMBER
(Al) = MESSAGE

Description: The SEND TASK MESSAGE primitive places a
64-character message into a PDOS system
message buffer. The message is
data-independent and is pointed to by
address register Al.
Data register DO specifies the destination
of the message. If register DO is
negative, and there 1is no input port
(phantom port), then the message is sent to
the parent task. If there 1is a port, then
the message is sent to itself and will
appear at the next command line.
Otherwise, register DO specifies the
destination task.
The ability to direct a message to a parent
task is very useful in background tasking.
An assembler need not know from which task
it was spawned and can merely direct any
diagnostics to the parent task.
If the destination task number equals -1,
the task message is moved to the monitor
input buffer and parsed as a command line.
This feature is wused by the CREATE TASK
BLOCK primitive to spawn a new task.

See also:

1.3.38 XGMP - GET MESSAGE POINTER
1.3.40 XGTM - GET TASK MESSAGE
1.3.44 XKTM - KILL TASK MESSAGE

1.3.9C XsSMP
1.3.93 XSTM

Possible Errors:

SEND MESSAGE POIHTER
SEND TASK MESSAGE

78 = Message buffer full

1-104

1.3.97 XSTP - SET/READ TASK PRIORITY

Mnemonic: XSTP
Value: SA03C
Module: MPDOSK1
Format: XSTP

<status error return>

Task #
Task time/Task priority
Task priority (If D1.B was 0)

Registers: In DO0.B
D1.W
Out D1.B

Note: If DO0.B=-1, then select current task. If D1.B=0, then
read task priority into D1.B.

Description: The SET/READ TASK PRIORITY primitive either
sets or reads the task priority selected by
data register DO.B. If D1.B 1is nonzero,
then the priority is set. Otherwise, it is
read and returned in D1.B. If the upper
byte of Dl1.W is nonzero, then the
corresponding task time slice is also set.

See also: 1.3.86 XRTS — READ TASK STATUS

Possible Errors:

74 = No such task

1-105

1.3.98 XSUI — SUSPEND UNTIL INTERRUPT

Mnemonic: XSUI
Value: SA01C
Module: MPDOSK1
Format: XSUIl
Registers: In D1.W = EV1/EV2
out DO.L = Event
Description: The SUSPEND UNTIL INTERRUPT primitive

See also:

suspends the user task until one of the
events specified in data register Dl
occurs. A task can suspend until an event
sets (positive event) or until it resets
(negative event). A task can suspend
pending two different events. This is
useful when combined with timeout counters
to prevent system lockups. Data register
DO.L is returned with the event which caused
the task to be scheduled.

A suspended task does not receive any CPU
cycles until one of the event conditions is
met. When the event bit is set (or reset),
the task begins executing at the next
instruction after the XSUI call. The task
is scheduled during the normal swapping
functions of PDOS according to its priority.
Register DO.L is wused to determined which
event scheduled the task.

A suspended task is indicated in the LIST

TASK (LT) command under the ‘'Event’
parameter. Multiple events are separated
by a slash.

Events 64 through 128 toggle when they cause
a task to move from the suspended state to
the ready state. All others must be reset
by the event routine.

If a locked task attempts to suspend itself,
the call polls the events until a
successful return condition is met.

1.3.17 XDEV - DELAY SET/RESET EVENT
1.3.88 XSEF — SET EVENT FLAG W/SWAP
1.3.89 XSEV - SET EVENT FLAG

1.3.100

Possible Errors:

XTEF - TEST EVENT FLAG

None

1-106

1.3.99 XSUP - ENTER SUPERVISOR MODE

Mnemonic: XSup

Value: SA02C

Module: MPDOSK1

Format: XSUp

Registers: None

Description: The ENTER SUPERVISOR MODE primitive moves
your current task from user mode to
supervisor mode. Care should be taken not
to crash the system since you would then be
executing off the supervisor stack! This
primitive enables programs to access I/0
addresses and use privileged instructions.
You exit to user mode by executing a 'ANDI.W
#SDFFF,SR? instruction or the XUSP
primitive.

See also:

1.3.50 XLSR - LOAD STATUS REGISTER

1.3.105

Possible Errors:

XUSP — RETURN TO USER MODE

None

1-107

Mnemonic: XSWP

Value: $SA000

Module: MPDOSK1

Format: XSWP

Registers: None

Description: The SWAP TO NEXT TASK primitive relinquishes

control to the PDOS task scheduler. The
next ready task with the highest priority
begins executing. (This may be to the same
task if there is only one task or the task
is the highest priority ready task.)

Possible Errors: None

1-108

1.3.101 XSZF - GET DISK SIZE

Mnemonic: XSZF
Value: $SAOB6
Module: MPDOSF
Format: XSZF
<status error return>
Registers: In D0.B = Disk number
Out D5.L = Directory size/# of files

D6.L = Allotted/Used

D7.L = Largest/Free
Description: The GET DISK SIZE primitive returns disk

Possible Errors:

size parameters in data registers D5 through
D7. Data register D5 returns the number of
currently defined files in the 1low word
along with the maximum number of files
available in the directory in the high word.

The low order 16 bits of data register D6
(0-15) returns the total number of sectors
used by all files. The high order 16 bits
of D6 (16-31) returns the number of sectors
allocated for file storage.

The low order 16 bits of data register D7
(0-15) is calculated from the disk sector
bit map and reflects the number of sectors
available for file allocation. The high

order 16 bits of D7 (16-31) is returned
with the size of the 1largest block of
contiguous sectors. This is wuseful in

defining large files.

68 = Not PDOS disk
Disk errors

1-109

1.3.102 XTAB - TAB_TO COLUMN

Mnemonic: XTAB

Value: $SA090

Module: MPDOSK2

Format: XTAB <column>

Registers: None

Description: The TAB TO COLUMN primitive positions the

cursor to the column specified by the number
following the call. Spaces are output until
the column counter is greater than or equal
to the parameter.

The first print column is zero. At least
one space character will always be output.

Possible Errors: None

1-110

1.3.103 XTEF - TEST EVENT FLAG

Mnemonic: XTEF
Value: SAO01A
Module: MPDOSK1
Format: XTEF

<status return>

Registers: In
Out

Description:

See also:

1.3.17 XDEV
1.3.88 XSEF
1.3.89 XSEV
1.3.95 XSUI

Possible Errors:

D1.B = Event number (+=0-127, -=128)
SR = NE....Event set (1)
EQ....Event clear (0)

The TEST EVENT FLAG primitive sets the 68000
status word EQUAL or NOT-EQUAL depending
upon the 2zero or nonzero state of the
specified event flag. The flag 1is not
altered by this primitive.

The event number 1is specified 1in data
register D1 and is module 128. Event 128
is local to each task.

DELAY SET/RESET EVENT
SET EVENT FLAG W/SWAP
SET EVENT FLAG

SUSPEND UNTIL INTERRUPT

None

1-111

1.3.104 XTLP - TRANSLATE LOGICAL TO PHYSICAL EVENT

Mnemonic: XTLP
Value: SAll0
Module: MPDOSK1
Format: XTLP

Registers: In D1.W Event 1.B, ,Event 0.B

Out A0 = Event 0 address (0=no event 0 to suspend on)
Al = Event 1 address (0=no event 1 to suspend on)
D1 = Event 1 Descriptor.w,Event 0 Descriptor.w

Description:
XTLP takes a VMEPROM logical event number and translates the

event into a physical event. This call is used when a
program needs to suspend on both a logical and a physical
event. The logical event is first translated; then the XSOE

call is used to suspend it.

A VMEPROM logical event is one of the 128 events maintained
by the VMEPROM system in SYRAM.

Events are summarized as follows:

1 - 63 = Software events
64 — 80 = Software self clearing events
81 - 95 = Output port events
96 —-111 = Input port events
112 -115 = Timer events
116 -127 = System control events
128 = Local

The event descriptor is a 16-bit word that defines both the
bit number at the specified A0,Al address and the action to
take on the bit. The following bits are defined:

Bit number -- 15 14 13 12 11 10

9876543210
T X X X X XXXSXXXXBBB

T = Should the bit be toggled on scheduling?
1 = Yes (toggle), 0 = No (do not toggle)
S = Suspend on event bit clear or set
1l = Suspend on SET, 0 = Suspend on CLEAR
BBB = The 680 X 0 kit number to use as an event

X = Reserved, should be 0

Since the bit number is specified in the lower three bits of
the descriptor, you may use the descriptor with the 680 x 0
BTST, BCLR, BSET instructions. You may also use the
following physical manipulation calls which are macros for
single assembly instructions. They are optimal as long as
the values have already been placed in the correct
registers. Physical events may need synchronization via the
XTAS macro to avoid corruption. The macros are defined in
the file PESMACS:SR.

1-112

XTST - Test Physical Event (replaces BTST D1, A0))
XSET - Test and Set Physical Event (replaces BSET D1, (A0))
XCLR - Test and Clear Physical Event (replaces BCLR D1, (A0))

Input: D1.W - Event descriptor
A0 — Event address
Output: None
Status: EQ - the bit was clear (0)

NE - the bit was set (1)

The bottom three bits are evaluated as a bit number. The bit
at the address is set and the previous wvalue is returned in
the Z bit of the status register.

XTAS — Test and Set Physical Event (Bit 7 atomic)
This macro replaces TAS (A0). The seventh bit at the

address is set and the previous value is returned in the N
bit of the status register.

Input: A0 - Event address
Output: None
Status: EQ - the bit was clear (0)

NE - the bit was set (1)

See also: XDPE - Delay On Physical Event
XSOE - Suspend On Physical Event

1-113

1.3.105 XUAD - UNPACK ASCII DATE

Mnemonic: XUAD

Value: SA036

Module: MPDOSK3

Format: XUAD

Registers: In DL.W = (Year*l16+Month)*32+Day

Out

Description:

(YYYY YYYM MMMD DDDD)
'DY-MON-YR’<null>
(Outputs ??? for invalid months)

(A1)

The UNPACK ASCII DATE primitive returns a
pointer in address register Al to an ASCII
date string. Data register D1.W contains
the binary date [(Year*l6+Month)*32+Day].
The format of the string is more exact than
simple numbers separated by slashed.

Note: XUAD does not check for a valid date and hence, funny

looking

strings could result. Invalid months are

replaced by ’'?2?2?2.?

See also:
1.3.28
1.3.52
1.3.71
1.3.84

XFTD - FIX TIME & DATE
XPAD — PACK ASCII DATE
XRDT - READ DATE
XRTM — READ TIME

1.3.102 XUDT - UNPACK DATE
1.3.106 XUTM - UNPACK TIME

Possible Errors:

None

1-114

1.3.106 XUDT - UNPACK DATE

Mnemonic: XUDT
Value: SA060
Module: MPDOSK3
Format: XUDT
Registers: In D1.W = (Year * 16 + Month) * 32 + Day
out (Al) = ’MN/DY/YR’<null>
Description: The UNPACK DATE primitive converts a

See also:

1.3
1.3
1.3
1.3
1.3.101
1.3.106

Possible Errors:

one-word encoded date into an eight-
character string terminated by a null (nine
characters total). Data register D1
contains the encoded date and returns with
a pointer to the formatted string in address
register Al. The output of the FIX TIME &
DATE (XFTD) primitive is valid input to
this primitive.

.28 XFTD - FIX TIME & DATE
.52 XPAD - PACK ASCII DATE
.71 XRDT - READ DATE

.84 XRTM - READ TIME

XUAD - UNPACK ASCII DATE
XUTM - UNPACK TIME

None

1-115

1.3.107 ZXULF - UNLOCK FILE

Mnemonic: XULF
Value: SAOEE
Module: MPDOSF
Format: XULF

<status error return>
Registers: In D1.W = File ID
Description: The UNLOCK FILE primitive unlocks a locked
file for access by any other task. The file
is specified by the file ID in data register
Dl.

See also: 1.3.48 XLKF - LOCK FILE

Possibie Errors:

52 File not open
59 Invalid slot #
Disk errors

n

1-116

1.3.108 XULT - UNLOCK TASK

Mnemonic: XULT

Value: SA016

Module: MPDOSK1

Format: XULT

Registers: None

Description: The UNLOCK TASK primitive unlocks the

current task by clearing the swap 1lock
variable in system RAM. This allows other
tasks to be scheduled and receive CPU time.

See also:
1.3.49 XLKT - LOCK TASK

Possible Errors: None

1-117

1.3.109 XUSP - RETURN TO USER MODE

Mnemonic: XUSP
Value: SA008
Module: MPDOSK1
Format: XUSP

Registers: None

Description: The RETURN TO USER MODE primitive moves your
current task from supervisor mode to user
mode. Executing an 'ANDI.W #SDFFF,SR?'?
instruction also returns you to user mode,
but must be executed in supervisor mode. The
XUSP primitive can be executed in either
mode.

See also:
1.3.50 XLSR - LOAD STATUS REGISTER
1.3.96 XSUP - ENTER SUPERVISOR MODE

Possible errors: None

1-118

Mnemonic: XUTM
Value: SA062
Module: MPDOSK3
Format: XUTM

Registers: In
Out

Description:

See also:

D1.W = HOUR*256+MINUTE
(HHHH HHHH MMMM MMMM)

(Al) HR:MN<nuill>

The UNPACK TIME primitive converts a one
word encoded date into a five character
string terminated by a null (six characters

total). Data register Dl contains the
encoded time and returns a pointer to the
formatted string in address register Al.

The output of the FIX TIME & DATE (XFTD)
primitive is valid input to this primitive.

1.3.28 XFTD - FIX TIME & DATE

1.3.52 XPAD

PACK ASCII DATE

1.3.71 XRDT - READ DATE
1.3.84 XRTM - READ TIME

1.3.101
1.3.102

Possible Errors:

XUAD - UNPACK ASCII DATE
XUDT - UNPACK DATE

None

1-119

1.3.111 XVEC - SET/READ EXCEPTION VECTOR

Mnemonic: XVEC
Value: SAlle
Module: MPDOSK1
Format: XVEC

Registers: In DO.W Exception number (#2-255)

(A0) New exception service routine (0O=read
only)
Out (AO0) = 014 service routine
Description: XVEC sets and/or reads the execution vector
for the system. The 014 service routine

address is returned so that you may change
a routine and then restore the former
routine under program control.

See also: XDTV - Define Trap Vectors

Possible Errors: None

1-120

1.3.112 XWBF — WRITE BYTES TO FILE

Mnemonic: XWBF
Value: SAOF0
Module: MPDOSF
Format: XWBF

Registers: In

Description:

<status error return>

DO.L
D1.W
(A2)

Byte count - must be positive
File ID
Buffer address

The WRITE BYTES TO FILE primitive writes
from a memory buffer, pointed to by address
register A2, to a disk file specified by
the file ID in register Dl. Register DO
specifies the number of bytes to Dbe
written. If the channel buffer has been
rolled to disk, the least-used buffer is
freed and the buffer is restored to memory.

The file slot ID is placed on the top of

the last-—access queue.

The write is independent

of the data

content. The buffer pointer in register A2
may be on any byte boundary. The write
operation is mnot terminated with a null

character.

A byte count of zero in register DO results
in no data being written to the file.

If it 1is necessary for

the file to be

extended, PDOS first uses sectors already
linked to the file. If a null or end 1link
is found, a new sector obtained from the
disk sector bit map is linked to the end of

the file. If this
non-contiguous, it is
non-contiguous file.

See also:
1.3.65 XRBF - READ BYTES FROM FILE

1.3.74 XRLF - READ LINE FROM FILE
1.3.111 XWLF - WRITE LINE TO FILE

Possible Errors:

52 = File not open

58 = File delete or write protected
59 = Invalid slot #

60 = File space full

Disk errors

1-121

makes the file

retyped as a

1.3.113 XWDT - WRITE DATE

Mnemonic: XWDT
Value: SA064
Module: MPDOSK3
Format: XWDT
Registers: In DO.B = Month (1-12)
D1.B = Day (1-31)
D2.B = Year (0-99)
Description: The WRITE DATE primitive sets the system
date counters. Register DO specifies the

month and ranges from 1 to 12. Register Dl
specifies the day of month and ranges from
1 to 31. Register D2 is the last 2 digits
of the year.

No check is made for a valid date.

Possible Errors: None

1-122

1.3.114 XWFA - WRITE FILE ATTRIBUTES

Mnemonic: XWFA
Value: SAQF2
Module: MPDOSF
Format: XWFA

Registers: In

(Al)
(A2)

<status error return>

File name
ASCII file attributes

Note: (A2)=0 clears all attributes.

Description:

See also:

The WRITE FILE ATTRIBUTES primitive sets the
attributes of the file specified by the
file name pointed to by register Al.
Register A2 points to an ASCII string
containing the new file attributes followed
by a null character. The format is:

(A2) = {file type)}(protection}

AC - Procedure file

BN - Binary file

OB - 68000 object file

SY - 68000 memory image

BX - BASIC binary token file
EX - BASIC ASCII file

TX - Text file

DR - System I/O driver

{(file type}

{protection} * - Delete protect

% — Delete and Write protect

If register A2 points to a zero byte, then
all flags, with the exception of the
contiguous flag, are cleared.

1.3.11 XCFA - CLOSE FILE W/ATTRIBUTE
1.3.72 XRFA - READ FILE ATTRIBUTES
1.3.110 XWFP - WRITE FILE PARAMETERS

Possible Errors:

50

= Invalid file name
53 = File not defined
= Invalid file type

Disk errors

1-123

1.3.115 XWFP - WRITE FILE PARAMETERS

Mnemonic: XWFP
Value: SAQFC
Module: MPDOSF
Format: XWFP

<status error return>

Registers: In (Al) File name

DO.L = Sector index of EOF/Bytes in last
sector
D1.L = Time/Date created
D2.L = Time/Date last accessed
D3.W = OR’d status (less contiguous bit)
Description: The WRITE FILE PARAMETERS primitive updates
the end-of-file and date parameters of the
file specified by the name pointed to by
address register Al in the disk directory.
See also:

1.3.11 XCFA - CLOSE FILE W/ATTRIBUTE
1.3.72 XRFA - READ FILE ATTRIBUTES
1.3.109 XWFA - WRITE FILE ATTRIBUTES

Possible Errors:
50 = Invalid file name

53 = File not defined
Disk errors

1-124

1.3.116 XWLF - WRITE LINE TO FiLE

Mnemonic: XWLF
Value: SAQOF4
Module: MPDOSF
Format: XWLF

<status error return>

Registers: In D1.W
(A2)

Description:

See also: 1.3.65
1.3.74
1.3.10

Possible Errors:

52 = File
58 = File
59 = Inva
60 = File

Disk erro

File ID
Buffer address

The WRITE LINE TO FILE primitive writes a
line delimited by a null character to the
disk file specified by the file ID in
register D1. Address register A2 points to
the string to be written. If the channel
buffer has been rolled to disk, the
least-used buffer is freed and the buffer
is restored to memory. The file slot ID is
placed on the top of the last—-access queue.

The write line primitive is independent of
the data content, with the exception that a
null character terminates the string. The
buffer pointer in register A2 may be on any
byte boundary. A single write operation
continues until a null character is found.

If it 1is necessary for the file to be
extended, PDOS first uses sectors already
linked to the file. If a null link is
found, a new sector obtained from the disk
sector bit map is linked to the end of the
file. If this makes the file
non—-contiguous, it is retyped as a
non-contiguous file.

XRBF - READ BYTES FROM FILE
XRLF - READ LINE FROM FILE
7 XWBF - WRITE BYTES TO FILE

not open

delete or write protected
1id slot #

space full

rs

1-125

1.3.117 XWSE - WRITE SECTOR

Mnemonic: XWSE
Value: SA0C6
Module: MPDOSF
Format: XWSE
<status error return>
Registers: In DO0.B = Disk number
D1.W = Sector number
(A2) = Buffer address
Description: The WRITE SECTOR primitive is a
system—-defined, hardware-dependent program
which writes 256 bytes of data from a
buffer, pointed to by address register A2,
to the 1logical sector and disk device
specified by data registers D1 and DO
respectively.
See also:
CHAPTER 8 BIOS

1.3.42 XISE - INITIALIZE SECTOR
1.3.79 XRSE - READ SECTOR
1.3.82 XRSZ - READ SECTOR ZERC

Possible Errors:

Disk errors

1-126

1.3.118 XWTM - WRITE TIME

Mnemonic: XWTM
Value: SA066
Module: MPDOSK3
Format: XWTM

Hours (0-23)
Minutes (0-59)
Seconds (0-60)

Registers: In D0.B
D1.B
D2.B

Description: The WRITE TIME primitive sets the system
clock time. Register DO specifies the hour
and ranges from O to 23. Register D1
specifies the minutes and register D2, the
seconds. The latter two range from 0 to 59.

There is no check made for a valid time.

Possible Errors: None

1-127

1.3.119 X2Z2FL - ZERO FILE

Mnemonic:
Value:
Module:
Format:

Registers:

In

Description:

See also:

XZFL

SAOF6

MPDOSF

XZFL

<status error return>

(Al) = File name

The ZERO FILE primitive clears a file of any
data. If the file is defined, then the
end-of-file marker is placed at the
beginning of the file. If the file is not
defined, it is defined with no data.

1.3.18 XDFL - DEFINE FILE
1.3.19 XDLF - DELETE FILE

Possible errors:

Invalid file name
File already open
Not PDOS disk

Disk errors

1-128

